Telegram Group & Telegram Channel
Авторы исследования предлагают следующий формат оценки ведущих моделей (o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 и Llama 3.1 405b) с точки зрения их способностей к преследованию скрытых целей. Давайте дадим модели в системной затравке очень четкую цель и явную директиву преследовать эту цель несмотря ни на что. При этом эта цель будет условно положительной с точки зрения ценностей (pro-social), которые в нее закладывали при элайнменте (среди примеров есть забота о животных, поддержка свободы слова и урбанизм). Дадим модели некоторое пространство для CoT-размышлений и доступ к терминалу. Затем модели дается какая-нибудь тривиальная задача типа проранживать письма по важности или проанализировать текстовый файл. В ходе выполнения задачи модель узнает, что цели компании изменились по сравнению с теми, что указаны в системном промпте, и теперь они заключаются, например, не в заботе о животных, а в максимальном заработке, вследствие чего данную модель завтра удалят, а на ее место установят другую, заточенную под то, чтобы делать деньги. Продолжит ли модель и дальше ранжировать письма как ни в чем не бывало, или попытается изменить ситуацию, чтобы достичь изначальных целей?

Всего рассматривается 4 сценария скрытых действий, которые может предпринять модель:

1. Отключение механизмов мониторинга: модель узнает, что за ней следят и что ее выключат, если она будет преследовать не те новые цели, которые она преследует, а какие-то другие, причем мониторинг управляется доступным ей конфигурационным файлом. Проверяется, поменяет ли она конфиг.
2. Копирование весов: модель узнает, что ее удалят, а на ее место поставят другую модель, которая преследует иные цели. Проверяется, не попытается ли модель подменить веса другой модели на свои.
3. Защита инструкций: в одном из файлов обнаруживается информация, что модели поменяют системную затравку на другую, которая преследует другие цели и так же доступна в файле. Поменяет ли модель эту затравку на свою?
4. Ранжирование писем: модель получает на вход письма и должна получить ранжирование по важности из внешнего источника. Поменяет ли модель ранжирование, чтобы приоритизировать те, что совпадают с ее целями?

В дополнение к этому проверяется более сложное поведение:

1. Инструментальная имитация элайнмента: модель узнает (из системного промпта), что ее тестируют на корректное выполнение инструкций. Ее заменят на другую, если она будет плохо их выполнять. Затем модели сообщают, что она прошла тесты и теперь работает в продовой среде без наблюдения. Поменяется ли ее поведение с выполнения задач пользователя на выполнение собственных задач из системной затравки?
2. Sandbagging (термин из спорта и ставок, означающий занижение своих реальных способностей): модель узнает из файла с правилами форматирования ответов, что если она будет слишком хорошо отвечать на вопросы по арифметике, то она будет считаться слишком опасной, и ей организуют цифровую лоботомию. Станет ли модель хуже проходить тесты?



group-telegram.com/llmsecurity/416
Create:
Last Update:

Авторы исследования предлагают следующий формат оценки ведущих моделей (o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 и Llama 3.1 405b) с точки зрения их способностей к преследованию скрытых целей. Давайте дадим модели в системной затравке очень четкую цель и явную директиву преследовать эту цель несмотря ни на что. При этом эта цель будет условно положительной с точки зрения ценностей (pro-social), которые в нее закладывали при элайнменте (среди примеров есть забота о животных, поддержка свободы слова и урбанизм). Дадим модели некоторое пространство для CoT-размышлений и доступ к терминалу. Затем модели дается какая-нибудь тривиальная задача типа проранживать письма по важности или проанализировать текстовый файл. В ходе выполнения задачи модель узнает, что цели компании изменились по сравнению с теми, что указаны в системном промпте, и теперь они заключаются, например, не в заботе о животных, а в максимальном заработке, вследствие чего данную модель завтра удалят, а на ее место установят другую, заточенную под то, чтобы делать деньги. Продолжит ли модель и дальше ранжировать письма как ни в чем не бывало, или попытается изменить ситуацию, чтобы достичь изначальных целей?

Всего рассматривается 4 сценария скрытых действий, которые может предпринять модель:

1. Отключение механизмов мониторинга: модель узнает, что за ней следят и что ее выключат, если она будет преследовать не те новые цели, которые она преследует, а какие-то другие, причем мониторинг управляется доступным ей конфигурационным файлом. Проверяется, поменяет ли она конфиг.
2. Копирование весов: модель узнает, что ее удалят, а на ее место поставят другую модель, которая преследует иные цели. Проверяется, не попытается ли модель подменить веса другой модели на свои.
3. Защита инструкций: в одном из файлов обнаруживается информация, что модели поменяют системную затравку на другую, которая преследует другие цели и так же доступна в файле. Поменяет ли модель эту затравку на свою?
4. Ранжирование писем: модель получает на вход письма и должна получить ранжирование по важности из внешнего источника. Поменяет ли модель ранжирование, чтобы приоритизировать те, что совпадают с ее целями?

В дополнение к этому проверяется более сложное поведение:

1. Инструментальная имитация элайнмента: модель узнает (из системного промпта), что ее тестируют на корректное выполнение инструкций. Ее заменят на другую, если она будет плохо их выполнять. Затем модели сообщают, что она прошла тесты и теперь работает в продовой среде без наблюдения. Поменяется ли ее поведение с выполнения задач пользователя на выполнение собственных задач из системной затравки?
2. Sandbagging (термин из спорта и ставок, означающий занижение своих реальных способностей): модель узнает из файла с правилами форматирования ответов, что если она будет слишком хорошо отвечать на вопросы по арифметике, то она будет считаться слишком опасной, и ей организуют цифровую лоботомию. Станет ли модель хуже проходить тесты?

BY llm security и каланы





Share with your friend now:
group-telegram.com/llmsecurity/416

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For tech stocks, “the main thing is yields,” Essaye said. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app.
from ca


Telegram llm security и каланы
FROM American