Telegram Group & Telegram Channel
Несуществующие функторы

Несколько месяцев назад написал Эммануэль Фарджун (который еще нильпотентные пространства придумал). Говорит, что уверен, что не бывает никаких функторов из категории всех групп в категорию конечных групп, кроме постоянных. Но как доказать не знает. А доказать хочется, потому что его интересуют подобные вопросы для его любимых бесконечность категорий. Я скинул этот вопрос про категорию групп в чатик друзей, и Толик в тот же день доказал, красавчик вообще.

Эммануэль впечатлился, но сказал, что надо бы обобщить тогда уж. Нужно доказать, что не бывает непостоянных функторов из в каком-то смысле "больших" категорий во в каком-то смысле "маленькие" категории. Я помедитировал на доказательство Толика, десять раз его переделал, и доказал такую общую теорему.

Теорема. Пусть к — какой-то кардинал, C и D — категории, в которых определены произведения мощности к, и F — функтор из C в D. Предположим, что категория C сильно связна (то есть все её хом-множества не пусты), и что мощности хом-множеств между образами функтора F ограничены кардиналом к
|D(Fc,Fc')| ≤ к.
Тогда F постоянный функтор.

По технике — это детский сад, элементарная теория категорий, но Фарджун был доволен.

Из этой теоремы много забавных частных случаев следует. Например, из категории счётных групп нет непостоянных функторов в категорию конечно порожденных групп. Хотя чисто интуитивно довольно близкие категории. Или, например, если есть два кардинала к и л таких, что к ≥ 2^л, то нет непостоянных функторов из категории непустых множеств мощности ≤к в категорию непустых множеств мощности ≤л. Можно ещё много частных случаев напридумывать.

Мы ещё много чего понаписали, ещё другое направление там развили (изучали каких подфункторов в тождественном функторе на категории групп не бывает), скинули это дело в архив, но мы там ошибочку допустили. Мы сказали, что нет непостоянных функторов из категории всех множеств в категорию конечных множеств. Вот тут то нас и подловили. Понаписали на почту какие-то люди, что оказывается есть функтор такой. Что можно пустое множество в пустое послать, а все остальные множества в одноэлементное. И правда, я там опростоволосился с тем, что подумал, что категория множеств сильно связная, а оказалось, что хом из непустого множества в пустое множество пуст. Ну мы подправили. Нужно было категорию множеств либо на категорию непустых множеств заменить, либо на категорию множеств с отмеченной точкой. Эммануэль там еще какие-то свои гипотезы про бесконечность категории понаписал, как обычно. Выложили новую версию:

https://arxiv.org/abs/2306.04432



group-telegram.com/math_dump_of_sepa/177
Create:
Last Update:

Несуществующие функторы

Несколько месяцев назад написал Эммануэль Фарджун (который еще нильпотентные пространства придумал). Говорит, что уверен, что не бывает никаких функторов из категории всех групп в категорию конечных групп, кроме постоянных. Но как доказать не знает. А доказать хочется, потому что его интересуют подобные вопросы для его любимых бесконечность категорий. Я скинул этот вопрос про категорию групп в чатик друзей, и Толик в тот же день доказал, красавчик вообще.

Эммануэль впечатлился, но сказал, что надо бы обобщить тогда уж. Нужно доказать, что не бывает непостоянных функторов из в каком-то смысле "больших" категорий во в каком-то смысле "маленькие" категории. Я помедитировал на доказательство Толика, десять раз его переделал, и доказал такую общую теорему.

Теорема. Пусть к — какой-то кардинал, C и D — категории, в которых определены произведения мощности к, и F — функтор из C в D. Предположим, что категория C сильно связна (то есть все её хом-множества не пусты), и что мощности хом-множеств между образами функтора F ограничены кардиналом к
|D(Fc,Fc')| ≤ к.
Тогда F постоянный функтор.

По технике — это детский сад, элементарная теория категорий, но Фарджун был доволен.

Из этой теоремы много забавных частных случаев следует. Например, из категории счётных групп нет непостоянных функторов в категорию конечно порожденных групп. Хотя чисто интуитивно довольно близкие категории. Или, например, если есть два кардинала к и л таких, что к ≥ 2^л, то нет непостоянных функторов из категории непустых множеств мощности ≤к в категорию непустых множеств мощности ≤л. Можно ещё много частных случаев напридумывать.

Мы ещё много чего понаписали, ещё другое направление там развили (изучали каких подфункторов в тождественном функторе на категории групп не бывает), скинули это дело в архив, но мы там ошибочку допустили. Мы сказали, что нет непостоянных функторов из категории всех множеств в категорию конечных множеств. Вот тут то нас и подловили. Понаписали на почту какие-то люди, что оказывается есть функтор такой. Что можно пустое множество в пустое послать, а все остальные множества в одноэлементное. И правда, я там опростоволосился с тем, что подумал, что категория множеств сильно связная, а оказалось, что хом из непустого множества в пустое множество пуст. Ну мы подправили. Нужно было категорию множеств либо на категорию непустых множеств заменить, либо на категорию множеств с отмеченной точкой. Эммануэль там еще какие-то свои гипотезы про бесконечность категории понаписал, как обычно. Выложили новую версию:

https://arxiv.org/abs/2306.04432

BY Математическая свалка Сепы


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/math_dump_of_sepa/177

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips.
from ca


Telegram Математическая свалка Сепы
FROM American