Notice: file_put_contents(): Write of 9770 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Warning: file_put_contents(): Only 4096 of 13866 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50 Математические байки | Telegram Webview: mathtabletalks/4645 -
А что будет, если мы попробуем то же самое доказательство провести на сфере? (Где сумма углов треугольника уже не π — скажем, там есть равносторонний прямоугольный треугольник с тремя прямыми углами!)
Проблема будет в том, что у нас уже нет параллельного переноса, позволяющего отождествить касательные плоскости в разных точках сферы. А вектор скорости идущего вдоль забора человека — лежит в касательной плоскости в той точке, где человек сейчас находится; в частности, угол, на который он поворачивает в вершине — откладывается в касательной плоскости именно в этой вершине. А касательные плоскости в разных точках — разные.
Ну хорошо, а нельзя ли с этим что-нибудь сделать? Например: а что, если идущий человек попытается тащить касательную плоскость с собой?
Пусть он идёт вдоль пути длины L. Поделим его на N отрезков длины L/N. Человек прошёл один отрезок и перенёс касательную плоскость параллельно в R^3. Но в новой точке касательная плоскость другая — параллельно перенесённые вектора накренились на угол порядка (1/N) (точнее, (L/R) (1/N), где R — радиус сферы, но путь и сфера у нас фиксированы, а меняем мы N). Человек спохватился и что-нибудь с этим сделал — например, ортогонально спроецировал новые вектора на касательную плоскость в новой точке. («Какая ещё нормальная компонента? Вам показалось, тут ничего не было!») И так он сделал N раз.
А сильно ли у нас поменялись длины векторов к концу пути? У нас было N операций проецирования — так что на вид кажется, что сильно. Но. Каждая из них умножает длины на косинус соответствующего угла, который порядка (1/N). А cos x = 1 - x^2/2 + …, так что косинусы эти не просто близкие к 1, а отличаются на величину всего лишь порядка 1/N^2 ! Так что даже произведение N таких косинусов близко к 1 (логарифм у него порядка 1/N).
Итого — мы определили параллельный перенос вдоль кривой (на сфере, а на самом деле — на любой поверхности, и даже на любом многообразии, вложенном в хоть какое-нибудь R^n). И он оказался ортогональным — сохраняющим длины касательных векторов — преобразованием.
Но вот только… результат параллельного переноса будет зависеть от выбора пути! Или, что то же самое — пройдя по замкнутому пути, мы можем обнаружить (и почти всегда обнаружим), что наше касательное пространство как-то повернулось.
Собственно — для случая поверхности в R^3, именно этот поворот и есть дефект угла, то, на сколько сумма внешних углов отличается от 2π! Потому что — представим себе, что человек обходит многоугольник, например, на сфере. Он несёт с собой касательное пространство (ну хорошо, для реалистичности — его переносную модель), и отмечает на нём свою скорость. В каждой вершине он добавляет новый сектор-угол поворота. Вернувшись в исходную точку, он получает на своей модели все сектора-углы, на которые он повернулся. И казалось бы, это полный оборот, только заканчивается их сумма в его векторе скорости сейчас, а начинается — в том же самом векторе скорости, обнесённом вокруг всего многоугольника. То есть повёрнутом параллельным переносом!
Так что на формулу, что на сфере радиуса R сумма углов треугольника равна π+(S/R^2) — можно смотреть как на утверждение, что при обходе фигуры площади S параллельный перенос приводит к повороту на S/R^2 (с правильным знаком). (И это не конец рассказа, конечно.)
А что будет, если мы попробуем то же самое доказательство провести на сфере? (Где сумма углов треугольника уже не π — скажем, там есть равносторонний прямоугольный треугольник с тремя прямыми углами!)
Проблема будет в том, что у нас уже нет параллельного переноса, позволяющего отождествить касательные плоскости в разных точках сферы. А вектор скорости идущего вдоль забора человека — лежит в касательной плоскости в той точке, где человек сейчас находится; в частности, угол, на который он поворачивает в вершине — откладывается в касательной плоскости именно в этой вершине. А касательные плоскости в разных точках — разные.
Ну хорошо, а нельзя ли с этим что-нибудь сделать? Например: а что, если идущий человек попытается тащить касательную плоскость с собой?
Пусть он идёт вдоль пути длины L. Поделим его на N отрезков длины L/N. Человек прошёл один отрезок и перенёс касательную плоскость параллельно в R^3. Но в новой точке касательная плоскость другая — параллельно перенесённые вектора накренились на угол порядка (1/N) (точнее, (L/R) (1/N), где R — радиус сферы, но путь и сфера у нас фиксированы, а меняем мы N). Человек спохватился и что-нибудь с этим сделал — например, ортогонально спроецировал новые вектора на касательную плоскость в новой точке. («Какая ещё нормальная компонента? Вам показалось, тут ничего не было!») И так он сделал N раз.
А сильно ли у нас поменялись длины векторов к концу пути? У нас было N операций проецирования — так что на вид кажется, что сильно. Но. Каждая из них умножает длины на косинус соответствующего угла, который порядка (1/N). А cos x = 1 - x^2/2 + …, так что косинусы эти не просто близкие к 1, а отличаются на величину всего лишь порядка 1/N^2 ! Так что даже произведение N таких косинусов близко к 1 (логарифм у него порядка 1/N).
Итого — мы определили параллельный перенос вдоль кривой (на сфере, а на самом деле — на любой поверхности, и даже на любом многообразии, вложенном в хоть какое-нибудь R^n). И он оказался ортогональным — сохраняющим длины касательных векторов — преобразованием.
Но вот только… результат параллельного переноса будет зависеть от выбора пути! Или, что то же самое — пройдя по замкнутому пути, мы можем обнаружить (и почти всегда обнаружим), что наше касательное пространство как-то повернулось.
Собственно — для случая поверхности в R^3, именно этот поворот и есть дефект угла, то, на сколько сумма внешних углов отличается от 2π! Потому что — представим себе, что человек обходит многоугольник, например, на сфере. Он несёт с собой касательное пространство (ну хорошо, для реалистичности — его переносную модель), и отмечает на нём свою скорость. В каждой вершине он добавляет новый сектор-угол поворота. Вернувшись в исходную точку, он получает на своей модели все сектора-углы, на которые он повернулся. И казалось бы, это полный оборот, только заканчивается их сумма в его векторе скорости сейчас, а начинается — в том же самом векторе скорости, обнесённом вокруг всего многоугольника. То есть повёрнутом параллельным переносом!
Так что на формулу, что на сфере радиуса R сумма углов треугольника равна π+(S/R^2) — можно смотреть как на утверждение, что при обходе фигуры площади S параллельный перенос приводит к повороту на S/R^2 (с правильным знаком). (И это не конец рассказа, конечно.)
This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Some privacy experts say Telegram is not secure enough Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country.
from ca