Notice: file_put_contents(): Write of 14469 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
какая-то библиотека | Telegram Webview: selfmadeLibrary/775 -
Telegram Group & Telegram Channel
ChatGPT опять наврал? Расследование на примере ANOVA-теста

Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.

Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.

Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.

🔤 Как я проверяла результаты?

1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты.
2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода.
▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.

Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.

Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.

🐈‍⬛ Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/selfmadeLibrary/775
Create:
Last Update:

ChatGPT опять наврал? Расследование на примере ANOVA-теста

Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.

Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.

Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.

🔤 Как я проверяла результаты?

1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты.
2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода.
▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.

Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.

Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.

🐈‍⬛ Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?

BY какая-то библиотека






Share with your friend now:
group-telegram.com/selfmadeLibrary/775

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government.
from ca


Telegram какая-то библиотека
FROM American