Как сделать квазиалгебру Ли из скобок Самельсона? Пока не знаю.
Начнем с определения. Пусть H — топологическая группа, [X,Y] — множество отображений пунктированных топ. пространств с точностью до пунктированной гомотопии.
Возьмём пунктированные отображения f:A->H, g:B->H. Их можно прокоммутировать в H, то есть рассмотреть A×B -> H, (a,b) -> f(a)*g(b)*f(a)^-1* g(b)^-1. При этом отображении все точки из AvB переходят в нейтральный элемент группы: имеем f(a0)=e=g(b0) из пунктированности, поэтому (a0,b) -> e, (a,b0) -> e.
Следовательно, корректно определено (A×B)/(AvB) -> H. Пространство слева называется "смэш-произведение" и обозначается AлB. Мы построили отображение множеств [A,H]×[B,H]->[AлB, H]. Это и есть (обобщенная) скобка Самельсона; я буду её обозначать как (f,g).
Заметим, что [A,H] — группа относительно поточечного умножения в H. Скобка Самельсона обычно не уважает групповые операции, но по крайней мере верно (f,g)^-1=(g,f), (f,e)=e=(e,g).
Как сделать квазиалгебру Ли из скобок Самельсона? Пока не знаю.
Начнем с определения. Пусть H — топологическая группа, [X,Y] — множество отображений пунктированных топ. пространств с точностью до пунктированной гомотопии.
Возьмём пунктированные отображения f:A->H, g:B->H. Их можно прокоммутировать в H, то есть рассмотреть A×B -> H, (a,b) -> f(a)*g(b)*f(a)^-1* g(b)^-1. При этом отображении все точки из AvB переходят в нейтральный элемент группы: имеем f(a0)=e=g(b0) из пунктированности, поэтому (a0,b) -> e, (a,b0) -> e.
Следовательно, корректно определено (A×B)/(AvB) -> H. Пространство слева называется "смэш-произведение" и обозначается AлB. Мы построили отображение множеств [A,H]×[B,H]->[AлB, H]. Это и есть (обобщенная) скобка Самельсона; я буду её обозначать как (f,g).
Заметим, что [A,H] — группа относительно поточечного умножения в H. Скобка Самельсона обычно не уважает групповые операции, но по крайней мере верно (f,g)^-1=(g,f), (f,e)=e=(e,g).
BY сладко стянул
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers.
from ca