Telegram Group & Telegram Channel
Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/tech_priestess/1840
Create:
Last Update:

Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите

BY Техножрица 👩‍💻👩‍🏫👩‍🔧










Share with your friend now:
group-telegram.com/tech_priestess/1840

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS.
from ca


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American