Telegram Group & Telegram Channel
Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999. В любом случае, это похоже на ~8p^3.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^3q ~ 2p^4. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями



group-telegram.com/cme_channel/4009
Create:
Last Update:

Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999. В любом случае, это похоже на ~8p^3.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^3q ~ 2p^4. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/4009

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Despite Telegram's origins, its approach to users' security has privacy advocates worried. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world."
from us


Telegram Непрерывное математическое образование
FROM American