Telegram Group & Telegram Channel
#статистика_для_котиков

Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка

Привет, коллега!

Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.

Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата Каждая конференция - это отдельная выборка с одинаковым количеством значений в ней. И для каждой выборки ты можешь посчитать выборочное среднее.

А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку с блекджеком и переменными, то она будет иметь нормальное распределение 🌈 Независимо от того, какое распределение имела генеральная совокупность.

Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает 😪

Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференций и не обанкротили наш институт, среднее распределения выборочных средних будет равно математическому ожиданию генеральной совокупности. В нашем случае - средней зарплате всех-всех учёных. А стандартное отклонение будет рассчитываться как стандартное отклонение генеральной совокупности, делённое на корень из количества значений в выборках, (в нашем случае из 50). И вот это стандартное отклонение распределения выборочных средних и называется стандартной ошибкой среднего (standard error mean, SEM)

Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ 🤷‍♂️

И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/297
Create:
Last Update:

#статистика_для_котиков

Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка

Привет, коллега!

Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.

Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата Каждая конференция - это отдельная выборка с одинаковым количеством значений в ней. И для каждой выборки ты можешь посчитать выборочное среднее.

А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку с блекджеком и переменными, то она будет иметь нормальное распределение 🌈 Независимо от того, какое распределение имела генеральная совокупность.

Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает 😪

Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференций и не обанкротили наш институт, среднее распределения выборочных средних будет равно математическому ожиданию генеральной совокупности. В нашем случае - средней зарплате всех-всех учёных. А стандартное отклонение будет рассчитываться как стандартное отклонение генеральной совокупности, делённое на корень из количества значений в выборках, (в нашем случае из 50). И вот это стандартное отклонение распределения выборочных средних и называется стандартной ошибкой среднего (standard error mean, SEM)

Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ 🤷‍♂️

И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.

BY АДовый рисёрч




Share with your friend now:
group-telegram.com/ad_research/297

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel.
from cn


Telegram АДовый рисёрч
FROM American