Типы данных или как не ошибиться с выбором критерия
Привет, коллега!
😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.
В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.
В свою очередь количественные данные делятся на непрерывные и дискретные. 🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее. 🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.
⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇
Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными. 🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов. 🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻
🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.
Типы данных или как не ошибиться с выбором критерия
Привет, коллега!
😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.
В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.
В свою очередь количественные данные делятся на непрерывные и дискретные. 🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее. 🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.
⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇
Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными. 🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов. 🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻
🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.
Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links.
from cn