Telegram Group & Telegram Channel
🔥Adversarial Diffusion Distillation или SDXL-Turbo

Мои кореша из Stability AI зарелизили новый метод дистилляции для SDXL.

Показывают, что из дистиллированной SD-XL (ADD-XL) теперь можно семплить за 4 шага без существенной потери в качестве.

Судя по метрикам - это новая сота. Может работать и за один шаг семплера, но тогда генерирует меньше деталей и картинка выходит чуть более замыленная.

Как это работает?
Это гибрид GAN-а и диффузии.
Тренировка основана на классическом методе дистилляции, но с дискриминатором! Когда число шагов снижается до одного, дискриминатор сильно добрасывает, ведь он не позволяет генерить полную кашу (это было уже показано в нескольких статьях в этом году).

1. Студент и учитель инициализируется весами SD-XL. Далее между предиктами студента и учителя накладывается L2 лосс. Любопытно, что учитель делает только 1 шаг, но начинает с зашумленного предикта студента, а не из случайного шума.

2. В качестве дискриминатора берутся фичи из ViT-S, натренированного в self-supervised режиме с помощью DINOv2. Затем эти фичи подают в тренируемую голову, которая выдает "Real" или "Fake". Тут важно именно брать сильный претренированный энкодер фичей, типа DINOv2.

Картиночки выглядят хорошо, но ниже 4х шагов - уже не то пальто.

Тренировочный код не выложили, и, кажется, его ждать не стоит.

Статья
Код и веса
Демо на ClipDrop (1 шаг)

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2324
Create:
Last Update:

🔥Adversarial Diffusion Distillation или SDXL-Turbo

Мои кореша из Stability AI зарелизили новый метод дистилляции для SDXL.

Показывают, что из дистиллированной SD-XL (ADD-XL) теперь можно семплить за 4 шага без существенной потери в качестве.

Судя по метрикам - это новая сота. Может работать и за один шаг семплера, но тогда генерирует меньше деталей и картинка выходит чуть более замыленная.

Как это работает?
Это гибрид GAN-а и диффузии.
Тренировка основана на классическом методе дистилляции, но с дискриминатором! Когда число шагов снижается до одного, дискриминатор сильно добрасывает, ведь он не позволяет генерить полную кашу (это было уже показано в нескольких статьях в этом году).

1. Студент и учитель инициализируется весами SD-XL. Далее между предиктами студента и учителя накладывается L2 лосс. Любопытно, что учитель делает только 1 шаг, но начинает с зашумленного предикта студента, а не из случайного шума.

2. В качестве дискриминатора берутся фичи из ViT-S, натренированного в self-supervised режиме с помощью DINOv2. Затем эти фичи подают в тренируемую голову, которая выдает "Real" или "Fake". Тут важно именно брать сильный претренированный энкодер фичей, типа DINOv2.

Картиночки выглядят хорошо, но ниже 4х шагов - уже не то пальто.

Тренировочный код не выложили, и, кажется, его ждать не стоит.

Статья
Код и веса
Демо на ClipDrop (1 шаг)

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2324

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips.
from cn


Telegram эйай ньюз
FROM American