Telegram Group & Telegram Channel
Сейчас будет пост для новичков и повод вспомнить былое для старичков. 

Зачем ученым нужен AI? 


Тут мой бывший преподаватель по алгоритмам из Школы анализа данных в Минске, а ныне руководитель всего ШАДа Алексей Толстиков написал небольшое эссе на эту тему и собрал пару юзкейсов из академии. 

Кроме всяких чатов GPT, и Copilot'ов, помогающих писать код, машинное обучение уже давно используется в науке. Например, бозон Хиггса еще в 2012 году открыли с помощью ML (хоть и классического). Модели кормили килотоннами данных с датчиков, пока они искали какие-то необычные паттерны.

Самый известный на сегодняшний день пример, пожалуй, — AlphaFold, который предсказывает трехмерную структуру белков. Этот инструмент открыл множество новых комбинаций, за что и получил Нобелевскую премию. 

В таких задачах людям пришлось бы годами разбираться в бесконечных датасетах и графиках. Нейросети здесь незаменимы, особенно когда дело доходит до эмпирического вывода закономерностей — первого шага к построению полноценной теории или законов. 

Кстати, ШАД тоже занимается разработкой ИИ-моделей для научных задач.. Например, там собрали нейронку для предсказания распространения вулканического пепла в атмосфере. Это помогает заранее подготовиться к выпадению пепла и и минимизировать риски для людей и инфраструктуры. Такие риски есть, например, на Камчатке и в других регионах с активными вулканами. 

Технологии ИИ в науке начали применять еще давно. Например, с помощью модели Morpheus астрономы с 2020 года анализируют космическое небо в поисках экзопланет  Однако рядовой астроном или биолог вряд ли соберет AlphaFold, а обычный ML-щик без биолога тоже не справится. Поэтому ML-специалисты нужны везде! 

Вообще, междисциплинарный ресерч — это топ (я и сам начинал PhD с интердисциплинарного проекта с историей искусств). У нас уже есть Нобелевские премии по физике и химии, а еще осталась куча дисциплин, где использование AI еще не получило такого большого признания. Кто знает, может, следующая будет по истории? Например, за расшифровку каких-нибудь древних рун.

@ai_newz



group-telegram.com/ai_newz/3490
Create:
Last Update:

Сейчас будет пост для новичков и повод вспомнить былое для старичков. 

Зачем ученым нужен AI? 


Тут мой бывший преподаватель по алгоритмам из Школы анализа данных в Минске, а ныне руководитель всего ШАДа Алексей Толстиков написал небольшое эссе на эту тему и собрал пару юзкейсов из академии. 

Кроме всяких чатов GPT, и Copilot'ов, помогающих писать код, машинное обучение уже давно используется в науке. Например, бозон Хиггса еще в 2012 году открыли с помощью ML (хоть и классического). Модели кормили килотоннами данных с датчиков, пока они искали какие-то необычные паттерны.

Самый известный на сегодняшний день пример, пожалуй, — AlphaFold, который предсказывает трехмерную структуру белков. Этот инструмент открыл множество новых комбинаций, за что и получил Нобелевскую премию. 

В таких задачах людям пришлось бы годами разбираться в бесконечных датасетах и графиках. Нейросети здесь незаменимы, особенно когда дело доходит до эмпирического вывода закономерностей — первого шага к построению полноценной теории или законов. 

Кстати, ШАД тоже занимается разработкой ИИ-моделей для научных задач.. Например, там собрали нейронку для предсказания распространения вулканического пепла в атмосфере. Это помогает заранее подготовиться к выпадению пепла и и минимизировать риски для людей и инфраструктуры. Такие риски есть, например, на Камчатке и в других регионах с активными вулканами. 

Технологии ИИ в науке начали применять еще давно. Например, с помощью модели Morpheus астрономы с 2020 года анализируют космическое небо в поисках экзопланет  Однако рядовой астроном или биолог вряд ли соберет AlphaFold, а обычный ML-щик без биолога тоже не справится. Поэтому ML-специалисты нужны везде! 

Вообще, междисциплинарный ресерч — это топ (я и сам начинал PhD с интердисциплинарного проекта с историей искусств). У нас уже есть Нобелевские премии по физике и химии, а еще осталась куча дисциплин, где использование AI еще не получило такого большого признания. Кто знает, может, следующая будет по истории? Например, за расшифровку каких-нибудь древних рун.

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/3490

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world."
from cn


Telegram эйай ньюз
FROM American