group-telegram.com/cme_channel/4044
Last Update:
Если знать, что X³+Y³+Z³-3XYZ=(X+Y+Z)(…), то легко решить кубическое уравнение на X, имеющее вид X³-(3YZ)X+(Y³+Z³)=0.
А если у нас есть произвольное уравнение вида X³+PX+Q=0, легко ли его представить в нужном виде? Не особенно сложно: мы знаем, чему должны быть равны сумма и произведение Y³ и Z³, осталось решить квадратное уравнение.
(Можно тот же способ решать кубические уравнения объяснять с противоположного конца — в духе «попробуем искать корни уравнения X³+PX+Q=0 в виде X=³√u+³√v…» — получается не то что бы сложнее, но выглядит, кажется, еще более загадочно.)
В таком же духе можно решать и уравнения степени 4 (вместо многочлена X³+Y³+Z³-3XYZ, равного определителю матрицы 3×3, первая строка которой X,Y,Z, а следующие получаются циклическими сдвигами, надо взять определитель аналогичной матрицы 4×4).
BY Непрерывное математическое образование
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/cme_channel/4044