Telegram Group & Telegram Channel
дайджест комментариев: разбиения на доминошки

коллеги, спасибо большое за содержательные комментарии и вообще

1.
С.Шашков сделал веб-версию перемешивания ацтекского брильянта: https://shashkovs.ru/i/Aztec.html

Нравится и как конкретно это выглядит, и вообще идея превращения таких программ в веб-страницы — особ. удобно, если хочется поделиться на кружке, докладе и т.п.

Переход от несложного питона к джаваскрипту выглядит посильным — мб попробую при случае что-то сделать и на джаваскрипте.

2.
Л.Петров обращает внимание на то, что случайное разбиение ацтекского брильянта на доминошки радикально быстрее генерировать не применяя много случайных флипов, а при помощи domino shuffling.

В качестве популярного введения — советую видео https://youtu.be/Yy7Q8IWNfHM Mathologer'а. Для тех, кто читал брошюру Е.Смирнова про ацтекские брильянты, — это примерно то же, что описанное там «расширение площадей».

3.
Р.Гусарев напоминает, что разбиения квадрата 8×8 на доминошки намного быстрее считать не в лоб, а «динамикой по профилю».

Эту идею давайте в таком виде упакую. Если считать просто разбиения прямоугольника, say, 3×N, то эти числа P(n) никакой очевидной рекурренте не удовлетворяют. Почему? Ну просто потому, что если мы выкидываем все доминошки, покрывающие последний столбец, то остается не прямоугольник, а прямоугольник с дырками в самом правом столбце. Но это значит, что если думать про тройку (P(n),Q(n),P(n-1),Q(n-1)), где Q(n) — количество разбиений прямоугольника 3×N без верхней правой клетки, P(n-1) — количество разбиений без всего правого столбца, S(n-1) — только с одной клеткой в самом правом столбце, то следующая четверка линейно выражается через предыдущую!

Реализовал это вот так (и теперь, действительно, даже разбиения прямоугольника 8×64 считаются мгновенно):

def is_good(mask,n):
# mask кодирует последовательность из n нулей и единиц
# функция проверяет, можно ли замостить нули доминошками
if mask == 0:
return n%2 == 0
if mask%4 == 0:
return is_good(mask>>2,n-2)
if mask%4 == 2:
return False
return is_good(mask>>1,n-1)

def tilings(n,m):
ext = [ [1 if mask&perp==0 and is_good(mask+perp,n) else 0
for perp in range(2**n)] for mask in range(2**n)]
# ext[mask][perp]: можно ли положить перпендикулярные
# нашему ряду доминошки, чтобы не задеть маску,
# а остаток чтобы разбился на доминошки в ряду
ans = [1 if mask==0 else 0 for mask in range(2**n)]
for _ in range(m):
newans = [0] * (2**n)
for mask in range(2**n):
for oldmask in range(2**n):
newans[mask] += ext[mask][oldmask]*ans[oldmask]
# видно, что шаг есть умножение матрицы на вектор
ans = newans
return ans[0]

print(tilings(8,64))



group-telegram.com/compmathweekly/17
Create:
Last Update:

дайджест комментариев: разбиения на доминошки

коллеги, спасибо большое за содержательные комментарии и вообще

1.
С.Шашков сделал веб-версию перемешивания ацтекского брильянта: https://shashkovs.ru/i/Aztec.html

Нравится и как конкретно это выглядит, и вообще идея превращения таких программ в веб-страницы — особ. удобно, если хочется поделиться на кружке, докладе и т.п.

Переход от несложного питона к джаваскрипту выглядит посильным — мб попробую при случае что-то сделать и на джаваскрипте.

2.
Л.Петров обращает внимание на то, что случайное разбиение ацтекского брильянта на доминошки радикально быстрее генерировать не применяя много случайных флипов, а при помощи domino shuffling.

В качестве популярного введения — советую видео https://youtu.be/Yy7Q8IWNfHM Mathologer'а. Для тех, кто читал брошюру Е.Смирнова про ацтекские брильянты, — это примерно то же, что описанное там «расширение площадей».

3.
Р.Гусарев напоминает, что разбиения квадрата 8×8 на доминошки намного быстрее считать не в лоб, а «динамикой по профилю».

Эту идею давайте в таком виде упакую. Если считать просто разбиения прямоугольника, say, 3×N, то эти числа P(n) никакой очевидной рекурренте не удовлетворяют. Почему? Ну просто потому, что если мы выкидываем все доминошки, покрывающие последний столбец, то остается не прямоугольник, а прямоугольник с дырками в самом правом столбце. Но это значит, что если думать про тройку (P(n),Q(n),P(n-1),Q(n-1)), где Q(n) — количество разбиений прямоугольника 3×N без верхней правой клетки, P(n-1) — количество разбиений без всего правого столбца, S(n-1) — только с одной клеткой в самом правом столбце, то следующая четверка линейно выражается через предыдущую!

Реализовал это вот так (и теперь, действительно, даже разбиения прямоугольника 8×64 считаются мгновенно):


def is_good(mask,n):
# mask кодирует последовательность из n нулей и единиц
# функция проверяет, можно ли замостить нули доминошками
if mask == 0:
return n%2 == 0
if mask%4 == 0:
return is_good(mask>>2,n-2)
if mask%4 == 2:
return False
return is_good(mask>>1,n-1)

def tilings(n,m):
ext = [ [1 if mask&perp==0 and is_good(mask+perp,n) else 0
for perp in range(2**n)] for mask in range(2**n)]
# ext[mask][perp]: можно ли положить перпендикулярные
# нашему ряду доминошки, чтобы не задеть маску,
# а остаток чтобы разбился на доминошки в ряду
ans = [1 if mask==0 else 0 for mask in range(2**n)]
for _ in range(m):
newans = [0] * (2**n)
for mask in range(2**n):
for oldmask in range(2**n):
newans[mask] += ext[mask][oldmask]*ans[oldmask]
# видно, что шаг есть умножение матрицы на вектор
ans = newans
return ans[0]

print(tilings(8,64))

BY Компьютерная математика Weekly




Share with your friend now:
group-telegram.com/compmathweekly/17

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Anastasia Vlasova/Getty Images "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup.
from cn


Telegram Компьютерная математика Weekly
FROM American