Telegram Group & Telegram Channel
У Meta вышла громкая работа о новом способе токенизации

Токенизация – вообще одна из ключевых проблем LLM. Именно из-за токенизации модели плохо справляются с математикой. Токенайзер может токенизировать 380 как "380", а 381 как "38" и "1", то есть модель на самом деле просто не понимает, что представляет из себя число. При этом токен != слово и токен != слог. Токен – это вообще нечто нечеткое. Отсюда проблемы с элементарными фонетическими задачами вроде подсчета количества букв r в слове strawberry (больше примеров, в которых модельки фейлятся из-за токенизации см. здесь).

Чтобы попытаться решить эти проблемы, Meta предложили в качестве альтернативы токенам обычные байты. Тут надо сказать, что идея вообще-то не новая, еще давно уже выходила похожая token-free LM MambaByte. Но у Meta, во избежании слишком длинных последовательностей битов, впервые повляется динамический энкодинг в патчи.

Эти патчи и служат основными единицами вычисления, и внутри модели решается задача предсказания следующего патча. Патчи сегментируются динамически на основе энтропии следующего байта. Получается, если данные более "предсказуемы", то патчи получаются подлиннее, и наоборот. Однако перед группировкой байты все равно обрабатываются локальным энкодером, аналогично после предсказания следующего патча приходится подключать декодер.

На бечмарках все очень многообещающе: BLT (Byte Latent Transformer) находится на одном уровне или даже немного выше LLama 3 с BPE по перплексии (BPB на графике – это метрика перплексии, не зависяща от токенизатора). При этом подход масштабируется, и исследователям даже удалось обучить токен-фри Llama-3 8B на датасете 1Т токенов, и она оказалась в среднем немного лучше, чем Llama-3 с BPE.

Обязательно почитайте полностью, это очень интересно



group-telegram.com/data_secrets/5702
Create:
Last Update:

У Meta вышла громкая работа о новом способе токенизации

Токенизация – вообще одна из ключевых проблем LLM. Именно из-за токенизации модели плохо справляются с математикой. Токенайзер может токенизировать 380 как "380", а 381 как "38" и "1", то есть модель на самом деле просто не понимает, что представляет из себя число. При этом токен != слово и токен != слог. Токен – это вообще нечто нечеткое. Отсюда проблемы с элементарными фонетическими задачами вроде подсчета количества букв r в слове strawberry (больше примеров, в которых модельки фейлятся из-за токенизации см. здесь).

Чтобы попытаться решить эти проблемы, Meta предложили в качестве альтернативы токенам обычные байты. Тут надо сказать, что идея вообще-то не новая, еще давно уже выходила похожая token-free LM MambaByte. Но у Meta, во избежании слишком длинных последовательностей битов, впервые повляется динамический энкодинг в патчи.

Эти патчи и служат основными единицами вычисления, и внутри модели решается задача предсказания следующего патча. Патчи сегментируются динамически на основе энтропии следующего байта. Получается, если данные более "предсказуемы", то патчи получаются подлиннее, и наоборот. Однако перед группировкой байты все равно обрабатываются локальным энкодером, аналогично после предсказания следующего патча приходится подключать декодер.

На бечмарках все очень многообещающе: BLT (Byte Latent Transformer) находится на одном уровне или даже немного выше LLama 3 с BPE по перплексии (BPB на графике – это метрика перплексии, не зависяща от токенизатора). При этом подход масштабируется, и исследователям даже удалось обучить токен-фри Llama-3 8B на датасете 1Т токенов, и она оказалась в среднем немного лучше, чем Llama-3 с BPE.

Обязательно почитайте полностью, это очень интересно

BY Data Secrets







Share with your friend now:
group-telegram.com/data_secrets/5702

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war.
from cn


Telegram Data Secrets
FROM American