Notice: file_put_contents(): Write of 12270 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
DL in NLP | Telegram Webview: dlinnlp/1746 -
Telegram Group & Telegram Channel
Early Weight Averaging meets High Learning Rates for LLM Pre-training
Sanyal et al., [UT Austin]
arxiv.org/abs/2306.03241

Исследования того а что будет если мы просто усредним несколько моделей всегда были слегка безумной, но очень эффективной идеей улучшения качества моделей. В этой статье авторы показывают что это можно делать не только с финальными чекпоинтами, но и во время тренировки.

Авторы предлагают алгоритм LAWA (LAtest Weight Averaging) который выглядит так:
1. В начале тренируемся как обычно, сохраняем чекпоинты модели каждые N~1000 итераций
2. Когда мы достигаем update_step % N == 0, берём последние M~10 чекпоинтов и усредняем их, заменяем веса модели
3. Продолжаем тренироваться

Метод очень похож на EMA, но тут мы выполняем его не только для тестирования модели, но и для тренировки.

Интересные моменты: оптимальный lr для LAWA заметно выше чем оптимальный lr для обычной тренировки, а также LAWA позволяет избежать нестабильностей лосса когда он внезапно взрывается 🔥

В конце хотелось бы ещё сказать про подробности экспериментов. Порог входа в рисёч предтренировки это ~8xA100. Но есть альтернатива: Pythia и LLM360 зарелизили не только финальный чекпоинт, но и чекпоинты каждую 1000 итераций, а также порядок данных. Это означает что вы можете "вклиниться" со своим методом в середину тренировки и проверить как он работает в начале/середине/конце обучения. Это относительно дешево и так и были проведены большинство экспериментов.



group-telegram.com/dlinnlp/1746
Create:
Last Update:

Early Weight Averaging meets High Learning Rates for LLM Pre-training
Sanyal et al., [UT Austin]
arxiv.org/abs/2306.03241

Исследования того а что будет если мы просто усредним несколько моделей всегда были слегка безумной, но очень эффективной идеей улучшения качества моделей. В этой статье авторы показывают что это можно делать не только с финальными чекпоинтами, но и во время тренировки.

Авторы предлагают алгоритм LAWA (LAtest Weight Averaging) который выглядит так:
1. В начале тренируемся как обычно, сохраняем чекпоинты модели каждые N~1000 итераций
2. Когда мы достигаем update_step % N == 0, берём последние M~10 чекпоинтов и усредняем их, заменяем веса модели
3. Продолжаем тренироваться

Метод очень похож на EMA, но тут мы выполняем его не только для тестирования модели, но и для тренировки.

Интересные моменты: оптимальный lr для LAWA заметно выше чем оптимальный lr для обычной тренировки, а также LAWA позволяет избежать нестабильностей лосса когда он внезапно взрывается 🔥

В конце хотелось бы ещё сказать про подробности экспериментов. Порог входа в рисёч предтренировки это ~8xA100. Но есть альтернатива: Pythia и LLM360 зарелизили не только финальный чекпоинт, но и чекпоинты каждую 1000 итераций, а также порядок данных. Это означает что вы можете "вклиниться" со своим методом в середину тренировки и проверить как он работает в начале/середине/конце обучения. Это относительно дешево и так и были проведены большинство экспериментов.

BY DL in NLP






Share with your friend now:
group-telegram.com/dlinnlp/1746

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS.
from cn


Telegram DL in NLP
FROM American