Telegram Group & Telegram Channel
Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/171
Create:
Last Update:

Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/171

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. He adds: "Telegram has become my primary news source."
from cn


Telegram epsilon correct
FROM American