Telegram Group & Telegram Channel
Погружение в инверсию

Что такое инверсия в геометрии и кому нужно уметь ее применять?

Инверсия — это преобразование плоскости, которое превращает окружности и прямые в окружности и прямые, согласно некоторому набору правил. В отличие от многих других преобразований, таких как движения или преобразования подобия, инверсия не столь наглядна и интуитивна, что позволяет находить с ее помощью весьма удивительные решения.

Прежде всего, необходимо сказать, что инверсия — это довольно продвинутый метод решения задач. Более того, на мой субъективный взгляд, это одна из наиболее сложных тем для освоения: немногие люди владеют инверсией настолько хорошо, чтобы она действительно помогала решать задачи. Как следствие, учить ее нужно начинать либо в том случае, если вы считаете себя геометром, либо в том случае, если у вас есть амбиции решать сложные задачи уровня финала ВсОШ и выше.

Техники, связанные с инверсией, можно разделить на несколько типов. Так или иначе, я рекомендую начинать знакомство с инверсией по книге Жижилкина (https://old.mccme.ru//mmmf-lectures//books/books/book.35.pdf). Увы, она не содержит множество современных идей, поэтому ее будет недостаточно для полного погружения в тему. Также можно посмотреть этот ролик с разбором нескольких задач на инверсию. Разумеется, лучше сначала попробовать их решить самостоятельно.

Итак, поделим владение инверсией на несколько уровней сложности:

0 Уровень: Спрямляем окружности

На этом уровне понимания вы знаете, что инверсия с центром в точке O распрямляет окружности, проходящие через точку O, и пытаетесь с ее помощью упрощать задачи с большим количеством окружностей. Типичный пример:

Четыре окружности имеют общую точку O и повторно пересекаются еще по шести точкам. Из этих шести точек можно четырьмя способами выбрать три, не лежащие на одной из исходных окружностей. Докажите, что четыре окружности, описанные около треугольников из этих точек, имеют общую точку.

1 Уровень: Учимся использовать базовые свойства инверсии в задачах с окружностями

Нужно выучить базовые свойства инверсии: как она изменяет углы, что происходит с длинами отрезков, как инверсия связана с гомотетией. На этом уровне вы должны сразу видеть, что в подобных задачах стоит попробовать сделать инверсию:

Пусть точка C лежит на отрезке AB. Построим в одну сторону от отрезка полуокружности на диаметрах AB, BC, AC (эта конструкция называется арбелос). Перпендикуляр MC к отрезку AB делит арбелос на две части. Докажите, что радиусы окружностей, вписанных в эти части арбелоса, равны между собой.

2 Уровень: Инверсия в вершине треугольника

Многие задачи о треугольнике хорошо решаются с помощью инверсии с центром в вершине треугольника и любым радиусом. Идея заключается в следующем: пусть у нас есть треугольник ABC. Сделаем инверсию с центром в точке A и любым радиусом, обозначим за B* и C* образы B и C соответственно. Тогда хорошие объекты треугольника ABC обычно переходят в другие хорошие объекты треугольника ABC, что позволяет переводить одну задачу в другую.

Необходимо составить словарик: куда какая точка треугольника переходит при таком преобразовании — разобраться с серединами сторон, основаниями биссектрис, замечательными точками. По этому поводу рекомендую посмотреть мой листик из кружка в Хамовниках (в нем могут быть опечатки). Можно сделать карточки, как для изучения иностранного языка, и повторять перед сном :)

3 Уровень: Инверсия + симметрия в треугольнике и трапеции

Естественное продолжение предыдущей темы. Оказывается, треугольники ABC и AB*C* можно совмещать, если правильно подобрать радиус инверсии и дополнительно сделать симметрию относительно внешней или внутренней биссектрисы. Также бывает полезно делать симметрию относительно вершины треугольника.

Можно, например, посмотреть вот этот мой листок (в нем могут быть опечатки).

Все опечатки и ошибки исправлены, ссылки сохранены, стиль не изменен.



group-telegram.com/kusaka_daily/376
Create:
Last Update:

Погружение в инверсию

Что такое инверсия в геометрии и кому нужно уметь ее применять?

Инверсия — это преобразование плоскости, которое превращает окружности и прямые в окружности и прямые, согласно некоторому набору правил. В отличие от многих других преобразований, таких как движения или преобразования подобия, инверсия не столь наглядна и интуитивна, что позволяет находить с ее помощью весьма удивительные решения.

Прежде всего, необходимо сказать, что инверсия — это довольно продвинутый метод решения задач. Более того, на мой субъективный взгляд, это одна из наиболее сложных тем для освоения: немногие люди владеют инверсией настолько хорошо, чтобы она действительно помогала решать задачи. Как следствие, учить ее нужно начинать либо в том случае, если вы считаете себя геометром, либо в том случае, если у вас есть амбиции решать сложные задачи уровня финала ВсОШ и выше.

Техники, связанные с инверсией, можно разделить на несколько типов. Так или иначе, я рекомендую начинать знакомство с инверсией по книге Жижилкина (https://old.mccme.ru//mmmf-lectures//books/books/book.35.pdf). Увы, она не содержит множество современных идей, поэтому ее будет недостаточно для полного погружения в тему. Также можно посмотреть этот ролик с разбором нескольких задач на инверсию. Разумеется, лучше сначала попробовать их решить самостоятельно.

Итак, поделим владение инверсией на несколько уровней сложности:

0 Уровень: Спрямляем окружности

На этом уровне понимания вы знаете, что инверсия с центром в точке O распрямляет окружности, проходящие через точку O, и пытаетесь с ее помощью упрощать задачи с большим количеством окружностей. Типичный пример:

Четыре окружности имеют общую точку O и повторно пересекаются еще по шести точкам. Из этих шести точек можно четырьмя способами выбрать три, не лежащие на одной из исходных окружностей. Докажите, что четыре окружности, описанные около треугольников из этих точек, имеют общую точку.

1 Уровень: Учимся использовать базовые свойства инверсии в задачах с окружностями

Нужно выучить базовые свойства инверсии: как она изменяет углы, что происходит с длинами отрезков, как инверсия связана с гомотетией. На этом уровне вы должны сразу видеть, что в подобных задачах стоит попробовать сделать инверсию:

Пусть точка C лежит на отрезке AB. Построим в одну сторону от отрезка полуокружности на диаметрах AB, BC, AC (эта конструкция называется арбелос). Перпендикуляр MC к отрезку AB делит арбелос на две части. Докажите, что радиусы окружностей, вписанных в эти части арбелоса, равны между собой.

2 Уровень: Инверсия в вершине треугольника

Многие задачи о треугольнике хорошо решаются с помощью инверсии с центром в вершине треугольника и любым радиусом. Идея заключается в следующем: пусть у нас есть треугольник ABC. Сделаем инверсию с центром в точке A и любым радиусом, обозначим за B* и C* образы B и C соответственно. Тогда хорошие объекты треугольника ABC обычно переходят в другие хорошие объекты треугольника ABC, что позволяет переводить одну задачу в другую.

Необходимо составить словарик: куда какая точка треугольника переходит при таком преобразовании — разобраться с серединами сторон, основаниями биссектрис, замечательными точками. По этому поводу рекомендую посмотреть мой листик из кружка в Хамовниках (в нем могут быть опечатки). Можно сделать карточки, как для изучения иностранного языка, и повторять перед сном :)

3 Уровень: Инверсия + симметрия в треугольнике и трапеции

Естественное продолжение предыдущей темы. Оказывается, треугольники ABC и AB*C* можно совмещать, если правильно подобрать радиус инверсии и дополнительно сделать симметрию относительно внешней или внутренней биссектрисы. Также бывает полезно делать симметрию относительно вершины треугольника.

Можно, например, посмотреть вот этот мой листок (в нем могут быть опечатки).

Все опечатки и ошибки исправлены, ссылки сохранены, стиль не изменен.

BY Дневник Бродского




Share with your friend now:
group-telegram.com/kusaka_daily/376

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. False news often spreads via public groups, or chats, with potentially fatal effects. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world.
from cn


Telegram Дневник Бродского
FROM American