Telegram Group & Telegram Channel
Математические байки
Так вот — эту (прекрасную!) статью Григория Мерзона в « Квантике » я тут вспомнил не случайно. Она заканчивается вопросом про то, что происходит на сфере (см. скриншот). Так вот: всего, что мы сказали выше, достаточно, не только чтобы ответить на этот вопрос…
Действительно — мы уже знаем (хоть всё ещё это и не доказали), что при обходе фигуры площади S на сфере мы поворачиваемся на суммарный угол не 2π, как на плоскости — а на меньший, 2π - (S/R^2).
Потому что на (S/R^2) повернулась касательная плоскость при параллельном переносе вдоль нашей кривой.
Значит, если проведём из каждой точки отрезок касательной длины b (он же — наш велосипед), при приближении многоугольником и разбиении на сектора сумма их углов такой и будет. А значит, их суммарная площадь будет равна площади (сферического!) круга, умноженной на отношение углов, полученного и полного:
(2π - (S/R^2)) / 2π = 1 - (1/2πR^2) S.

Отлично! Теперь можно и сферическую теорему Пифагора записать. Давайте действовать, как в статье из Квантика: возьмём прямоугольный треугольник на сфере (с катетами a и b и гипотенузой c), и завращаем его вокруг вершины, где сходятся a и c.
Пусть s(r) — площадь круга на сфере радиуса r (в смысле сферической геометрии — мы движемся только по поверхности сферы). Завращав треугольник, мы получили круг радиуса с, соответственно, площади s(c). С другой стороны, он разбивается на круг радиуса a и площади s(a), получившийся из первого катета, и « кольцо », получившееся из второго катета — для которого формула выше даёт площадь
(1- (1/2πR^2)s(a)) * s(b).
Приравняв одно к другому и раскрыв скобки, получаем:

s(c) = s(a) + s(b) - (1/2πR^2) s(a) s(b).

Это ещё не окончательный вид — теорему Пифагора на сфере можно записать (и доказать) гораздо проще. Но это вид, к которому мы пришли, просто повторив рассуждения для плоскости — и воспользовавшись только что полученным знанием про дефект угла на сфере!



group-telegram.com/mathtabletalks/4656
Create:
Last Update:

Действительно — мы уже знаем (хоть всё ещё это и не доказали), что при обходе фигуры площади S на сфере мы поворачиваемся на суммарный угол не 2π, как на плоскости — а на меньший, 2π - (S/R^2).
Потому что на (S/R^2) повернулась касательная плоскость при параллельном переносе вдоль нашей кривой.
Значит, если проведём из каждой точки отрезок касательной длины b (он же — наш велосипед), при приближении многоугольником и разбиении на сектора сумма их углов такой и будет. А значит, их суммарная площадь будет равна площади (сферического!) круга, умноженной на отношение углов, полученного и полного:
(2π - (S/R^2)) / 2π = 1 - (1/2πR^2) S.

Отлично! Теперь можно и сферическую теорему Пифагора записать. Давайте действовать, как в статье из Квантика: возьмём прямоугольный треугольник на сфере (с катетами a и b и гипотенузой c), и завращаем его вокруг вершины, где сходятся a и c.
Пусть s(r) — площадь круга на сфере радиуса r (в смысле сферической геометрии — мы движемся только по поверхности сферы). Завращав треугольник, мы получили круг радиуса с, соответственно, площади s(c). С другой стороны, он разбивается на круг радиуса a и площади s(a), получившийся из первого катета, и « кольцо », получившееся из второго катета — для которого формула выше даёт площадь
(1- (1/2πR^2)s(a)) * s(b).
Приравняв одно к другому и раскрыв скобки, получаем:

s(c) = s(a) + s(b) - (1/2πR^2) s(a) s(b).

Это ещё не окончательный вид — теорему Пифагора на сфере можно записать (и доказать) гораздо проще. Но это вид, к которому мы пришли, просто повторив рассуждения для плоскости — и воспользовавшись только что полученным знанием про дефект угла на сфере!

BY Математические байки




Share with your friend now:
group-telegram.com/mathtabletalks/4656

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform.
from cn


Telegram Математические байки
FROM American