Telegram Group & Telegram Channel
Почему ризонинг ухудшает генерацию моделей LLM

Источник: Эксперт
Технология цепочек рассуждений (ризонинга) стала прорывом в области создания искусственного интеллекта (ИИ) — за счет нее большие языковые модели (LLM), такие как o1 и DeepSeek, могут решать сложные математические задачи и создавать работающий код. Но эта же технология может быть фактором, который вредит качеству ответов моделей, сообщают исследователи Калифорнийского университета. В своем докладе от 12 февраля они отмечают, что LLM с возможностями ризонинга могут отдавать предпочтения своим рассуждениям и игнорировать информацию о внешней среде. Это приводит к тому, что ИИ бесконечно планирует свои действия, но ничего не делает, принимает самовольные решения или отказывается от задачи из-за стресса, который вызывают его «мысли». Вместе с этим использование обычных LLM без ризонинга может быть почти вдвое дешевле при сопоставимых результатах, утверждают исследователи.

Ризонинг приводит к ошибкам из-за чрезмерно длинных цепочек рассуждений, в которых модель теряет фокус на исходной задаче, накапливая логические несоответствия, пояснил «Эксперту» глава отдела исследований в области ИИ дирекции разработки и развития цифровой платформы Университета 2035 Ярослав Селиверстов. Это может быть связано с ограничениями контекстного окна (максимального числа слов, которые модель может считывать за раз), чрезмерно сложным синтаксисом или недостатком релевантных данных в обучении, что провоцирует «зацикливание» на второстепенных деталях, рассуждает он. Также ризонинг может быть подвержен галлюцинациям, когда модель генерирует правдоподобные, но фактические неверные утверждения, которые затем использует в дальнейших рассуждениях, усугубляя ошибку. Еще одна проблема может быть связана со «смещением» (bias) в данных, на которых обучалась модель, что приводит к предвзятым рассуждениям, добавляет Ярослав Селиверстов.

Ризонинг критичен для задач, требующих многошаговой логики, связанных с математикой, анализом текста, соглашается директор департамента расследований T.Hunter, эксперт рынка НТИ SafeNet («Сейфнет») Игорь Бедеров. Он позволяет моделям «думать вслух», что повышает интерпретируемость решений; также этот функционал полезен для исследователя, который видит машинную логику и может ее менять при составлении промптов. Решить проблемы ризонинга можно за счет качественного написания промптов к модели и тщательной валидации рассуждений и действий, которые она совершает, уверен он.



group-telegram.com/nti2035media/9634
Create:
Last Update:

Почему ризонинг ухудшает генерацию моделей LLM

Источник: Эксперт
Технология цепочек рассуждений (ризонинга) стала прорывом в области создания искусственного интеллекта (ИИ) — за счет нее большие языковые модели (LLM), такие как o1 и DeepSeek, могут решать сложные математические задачи и создавать работающий код. Но эта же технология может быть фактором, который вредит качеству ответов моделей, сообщают исследователи Калифорнийского университета. В своем докладе от 12 февраля они отмечают, что LLM с возможностями ризонинга могут отдавать предпочтения своим рассуждениям и игнорировать информацию о внешней среде. Это приводит к тому, что ИИ бесконечно планирует свои действия, но ничего не делает, принимает самовольные решения или отказывается от задачи из-за стресса, который вызывают его «мысли». Вместе с этим использование обычных LLM без ризонинга может быть почти вдвое дешевле при сопоставимых результатах, утверждают исследователи.

Ризонинг приводит к ошибкам из-за чрезмерно длинных цепочек рассуждений, в которых модель теряет фокус на исходной задаче, накапливая логические несоответствия, пояснил «Эксперту» глава отдела исследований в области ИИ дирекции разработки и развития цифровой платформы Университета 2035 Ярослав Селиверстов. Это может быть связано с ограничениями контекстного окна (максимального числа слов, которые модель может считывать за раз), чрезмерно сложным синтаксисом или недостатком релевантных данных в обучении, что провоцирует «зацикливание» на второстепенных деталях, рассуждает он. Также ризонинг может быть подвержен галлюцинациям, когда модель генерирует правдоподобные, но фактические неверные утверждения, которые затем использует в дальнейших рассуждениях, усугубляя ошибку. Еще одна проблема может быть связана со «смещением» (bias) в данных, на которых обучалась модель, что приводит к предвзятым рассуждениям, добавляет Ярослав Селиверстов.

Ризонинг критичен для задач, требующих многошаговой логики, связанных с математикой, анализом текста, соглашается директор департамента расследований T.Hunter, эксперт рынка НТИ SafeNet («Сейфнет») Игорь Бедеров. Он позволяет моделям «думать вслух», что повышает интерпретируемость решений; также этот функционал полезен для исследователя, который видит машинную логику и может ее менять при составлении промптов. Решить проблемы ризонинга можно за счет качественного написания промптов к модели и тщательной валидации рассуждений и действий, которые она совершает, уверен он.

BY 2035. Новости НТИ




Share with your friend now:
group-telegram.com/nti2035media/9634

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp.
from cn


Telegram 2035. Новости НТИ
FROM American