Telegram Group & Telegram Channel
Но это была не самая интересная часть статьи — не зря же я писал про интерпретируемость?

Авторы задаются вопросами: почему в одном случае модель обобщается и работает, а в другом нет? Как именно модель грокнула задачу и начала решать задачу, какой механизм используется?

Оказывается, эти два вопроса связаны.— все дело в том, как модель решает задачу внутри себя.

В задаче композиции модель разбивается на 2 половинки. В первой она решает задачу «вытащить релевантную сущность», а во второй «вытащить нужное значения для найденной сущности». На примере:
— Возраст жены Барака ... (нужно написать цифру из атомарного факта)

Первые слои вытаскивают информацию о жене Барака (Мишель), и задача как бы становится «Возраст Мишель..» (это было дано в атомарных фактах). И вторая половина модели просто достаёт этот факт.

Проблема в том, что поскольку для части сущностей мы никогда не показывали такие задачки отношений, то модель не запомнила их и не разместила во второй половине. Ей просто неоткуда достать информацию, её не существует в момент обработки — она осталась в первых слоях, в первой половине модели. И это указывает на ограничение архитектуры трансформера — у каждого блока своя память (зашитая в параметры модели), и не получится вернуться на несколько блоков назад, чтобы найти какой-то факт. Если пропустил — всё. Авторы валидируют эту гипотезу изменением трансформера, предоставляя возможность обращаться к фактам из первых слоёв (по сути, банки знаний были общими для двух половинок) — и это заставляет модель работать даже для OOD задачи!

Вот так интерпретирование подсказывает, как нужно менять архитектуру, чтобы получить модель, вырабатывающую генерализуемую логику.

Но почему всё заработало сразу в задаче сравнения? А там работал другой механизм — в первой половине модели происходило извлечение фактов сразу для обеих сущностей (в моём примере это возраст Трампа и Байдена), а во второй половине происходило сравнение. Так как все факты модель успела запомнить, то такое «параллельное» извлечение знаний/выполнение задачи позволило работать с любыми сравнениями.

Самое крутое — что можно вот прямо заглянуть в трансформер и понять, решает модель задачу (научилась логике) или же просто запоминает, что ей говорят.



group-telegram.com/seeallochnaya/1476
Create:
Last Update:

Но это была не самая интересная часть статьи — не зря же я писал про интерпретируемость?

Авторы задаются вопросами: почему в одном случае модель обобщается и работает, а в другом нет? Как именно модель грокнула задачу и начала решать задачу, какой механизм используется?

Оказывается, эти два вопроса связаны.— все дело в том, как модель решает задачу внутри себя.

В задаче композиции модель разбивается на 2 половинки. В первой она решает задачу «вытащить релевантную сущность», а во второй «вытащить нужное значения для найденной сущности». На примере:
— Возраст жены Барака ... (нужно написать цифру из атомарного факта)

Первые слои вытаскивают информацию о жене Барака (Мишель), и задача как бы становится «Возраст Мишель..» (это было дано в атомарных фактах). И вторая половина модели просто достаёт этот факт.

Проблема в том, что поскольку для части сущностей мы никогда не показывали такие задачки отношений, то модель не запомнила их и не разместила во второй половине. Ей просто неоткуда достать информацию, её не существует в момент обработки — она осталась в первых слоях, в первой половине модели. И это указывает на ограничение архитектуры трансформера — у каждого блока своя память (зашитая в параметры модели), и не получится вернуться на несколько блоков назад, чтобы найти какой-то факт. Если пропустил — всё. Авторы валидируют эту гипотезу изменением трансформера, предоставляя возможность обращаться к фактам из первых слоёв (по сути, банки знаний были общими для двух половинок) — и это заставляет модель работать даже для OOD задачи!

Вот так интерпретирование подсказывает, как нужно менять архитектуру, чтобы получить модель, вырабатывающую генерализуемую логику.

Но почему всё заработало сразу в задаче сравнения? А там работал другой механизм — в первой половине модели происходило извлечение фактов сразу для обеих сущностей (в моём примере это возраст Трампа и Байдена), а во второй половине происходило сравнение. Так как все факты модель успела запомнить, то такое «параллельное» извлечение знаний/выполнение задачи позволило работать с любыми сравнениями.

Самое крутое — что можно вот прямо заглянуть в трансформер и понять, решает модель задачу (научилась логике) или же просто запоминает, что ей говорят.

BY Сиолошная


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/seeallochnaya/1476

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world.
from cn


Telegram Сиолошная
FROM American