Telegram Group & Telegram Channel
ChatGPT опять наврал? Расследование на примере ANOVA-теста

Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.

Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.

Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.

🔤 Как я проверяла результаты?

1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты.
2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода.
▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.

Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.

Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.

🐈‍⬛ Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/selfmadeLibrary/776
Create:
Last Update:

ChatGPT опять наврал? Расследование на примере ANOVA-теста

Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.

Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.

Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.

🔤 Как я проверяла результаты?

1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты.
2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода.
▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.

Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.

Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.

🐈‍⬛ Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?

BY какая-то библиотека






Share with your friend now:
group-telegram.com/selfmadeLibrary/776

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users.
from cn


Telegram какая-то библиотека
FROM American