Notice: file_put_contents(): Write of 8476 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Warning: file_put_contents(): Only 4096 of 12572 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50 сладко стянул | Telegram Webview: sweet_homotopy/1943 -
Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)
Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?
Шаг 1: вкладываем Σ в R^{N+n} при N > n.
Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности [Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.
Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением). [На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит. Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].
Если такого кобордизма нет — успех, наша сфера экзотическая. Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ. [Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]
Шаг 4: несколько вариантов в зависимости от n. а) n чётно. Тогда сфера стандартная. б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная. в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая. [в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.] г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.
...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).
P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений S^3 -> Σ -> S^4. С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений D^4 -> P -> S^4.
Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)
Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?
Шаг 1: вкладываем Σ в R^{N+n} при N > n.
Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности [Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.
Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением). [На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит. Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].
Если такого кобордизма нет — успех, наша сфера экзотическая. Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ. [Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]
Шаг 4: несколько вариантов в зависимости от n. а) n чётно. Тогда сфера стандартная. б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная. в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая. [в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.] г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.
...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).
P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений S^3 -> Σ -> S^4. С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений D^4 -> P -> S^4.
BY сладко стянул
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Telegram Messenger Blocks Navalny Bot During Russian Election And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed.
from cn