Как сделать квазиалгебру Ли из скобок Самельсона? Пока не знаю.
Начнем с определения. Пусть H — топологическая группа, [X,Y] — множество отображений пунктированных топ. пространств с точностью до пунктированной гомотопии.
Возьмём пунктированные отображения f:A->H, g:B->H. Их можно прокоммутировать в H, то есть рассмотреть A×B -> H, (a,b) -> f(a)*g(b)*f(a)^-1* g(b)^-1. При этом отображении все точки из AvB переходят в нейтральный элемент группы: имеем f(a0)=e=g(b0) из пунктированности, поэтому (a0,b) -> e, (a,b0) -> e.
Следовательно, корректно определено (A×B)/(AvB) -> H. Пространство слева называется "смэш-произведение" и обозначается AлB. Мы построили отображение множеств [A,H]×[B,H]->[AлB, H]. Это и есть (обобщенная) скобка Самельсона; я буду её обозначать как (f,g).
Заметим, что [A,H] — группа относительно поточечного умножения в H. Скобка Самельсона обычно не уважает групповые операции, но по крайней мере верно (f,g)^-1=(g,f), (f,e)=e=(e,g).
Как сделать квазиалгебру Ли из скобок Самельсона? Пока не знаю.
Начнем с определения. Пусть H — топологическая группа, [X,Y] — множество отображений пунктированных топ. пространств с точностью до пунктированной гомотопии.
Возьмём пунктированные отображения f:A->H, g:B->H. Их можно прокоммутировать в H, то есть рассмотреть A×B -> H, (a,b) -> f(a)*g(b)*f(a)^-1* g(b)^-1. При этом отображении все точки из AvB переходят в нейтральный элемент группы: имеем f(a0)=e=g(b0) из пунктированности, поэтому (a0,b) -> e, (a,b0) -> e.
Следовательно, корректно определено (A×B)/(AvB) -> H. Пространство слева называется "смэш-произведение" и обозначается AлB. Мы построили отображение множеств [A,H]×[B,H]->[AлB, H]. Это и есть (обобщенная) скобка Самельсона; я буду её обозначать как (f,g).
Заметим, что [A,H] — группа относительно поточечного умножения в H. Скобка Самельсона обычно не уважает групповые операции, но по крайней мере верно (f,g)^-1=(g,f), (f,e)=e=(e,g).
BY сладко стянул
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai.
from cn