Telegram Group & Telegram Channel
побывала на конференции Ассоциации «История и компьютер» по приглашению Андрея Володина.

разговор на конференции был так хорош, что я опишу здесь основные для себя тезисы.
дискуссия, в которой я участвовала, значит, была посвящена ИИ в иторической науке. вопросы классические: как быть историками с ИИ.

у меня, как у междисциплинарной исследовательницы, к историкам есть конкретные вопросы или даже запросы. как и к любой науке.

1. модели ИИ сейчас — лингвистические. это значит, что они построены на подходах из науки лингвистики. там довольно специфичное понимание текста, его значения и контекста. такие подходы — не всем подходят, простите за каламбур.
важно, чтобы учёные из других дисциплин разрабатывали свои модели, и была возможность работать не только с лингвистическими теориями, лежащими в основе методов ИИ.

2. в частности, в лингвистических моделях отсутствует историческое понимание данных и алгоритмов. это большая проблема для ИИ: там нет истории, если специально не запрашивать.
нужно, чтобы исторические науки создавали свои, иначе структурированные наборы данных. и выдачу их формировали в своих, иначе структурированных интерфейсах. иначе будет каша мала из топора.

3. для data science нет разницы между данными, информацией, фактами, источниками и знанием. эти понятия для них — плоские и как бы на одном листе.
у историков, как и у любой науки, эти понятия отличаются. работа с архивами и другими инфраструктурами, дающими источники — должна включать сложный отбор и иерархию материалов, из которых берутся данные. а понятие информации — вообще лишнее.

4. фейки и кейсы. эти слова — очень сильно путают.
4.1.
есть исследования, построенные на отдельных случаях (кейсах).
исследования эти потом становятся частью канона, теории строятся на них. потом случаев становится больше, часть догм и канонов пересматривается.
наука должна постоянно отслеживать эти изменения, и уточнять теории и методы, исходя из новых случаев.
если внезапно отрубить у институтов знания связующее звено в треугольнике теория-метод-предмет, у нас выйдет чудище в духе Франкенштейна. так нельзя.

4.2.
слово «фейк» — это лажа. нет фейков.
есть ошибки, недоработки, фальшивки, сфабрикованные артефакты и пр.
зачастую «фейк» — это просто неосмысленный случай. иногда «фейком» оказывается кусок данных, лишённый интерпретации. иногда — наоборот, интерпретация, построенная на устаревшем понимании истины в науке.
короче, говорить «фейк» учёным не стоит. нужно разбираться.

5. данные, на которых построены алгоритмы ИИ — это не артефакты, а трудовые операции. нельзя воспринимать их как нечто готовое к употреблению. мы ведь не едим упаковку от риса или пакет от овощей.
вот и с «данными» так нельзя.

короче, нужно, чтобы отдельные дисциплины аккуратно и последовательно работали с ИИ — как со-производители, а также знающие, умелые пользователи.

точно так же, как есть проблема «ИИ и этики», есть проблема «ИИ и эпистемологии».
нужно выучить всем ещё одно слово на букву «э» и работать с этими проблемами в университете на каждой кафедре. так процветём. иначе — не сможем.



group-telegram.com/wiresandswamps/744
Create:
Last Update:

побывала на конференции Ассоциации «История и компьютер» по приглашению Андрея Володина.

разговор на конференции был так хорош, что я опишу здесь основные для себя тезисы.
дискуссия, в которой я участвовала, значит, была посвящена ИИ в иторической науке. вопросы классические: как быть историками с ИИ.

у меня, как у междисциплинарной исследовательницы, к историкам есть конкретные вопросы или даже запросы. как и к любой науке.

1. модели ИИ сейчас — лингвистические. это значит, что они построены на подходах из науки лингвистики. там довольно специфичное понимание текста, его значения и контекста. такие подходы — не всем подходят, простите за каламбур.
важно, чтобы учёные из других дисциплин разрабатывали свои модели, и была возможность работать не только с лингвистическими теориями, лежащими в основе методов ИИ.

2. в частности, в лингвистических моделях отсутствует историческое понимание данных и алгоритмов. это большая проблема для ИИ: там нет истории, если специально не запрашивать.
нужно, чтобы исторические науки создавали свои, иначе структурированные наборы данных. и выдачу их формировали в своих, иначе структурированных интерфейсах. иначе будет каша мала из топора.

3. для data science нет разницы между данными, информацией, фактами, источниками и знанием. эти понятия для них — плоские и как бы на одном листе.
у историков, как и у любой науки, эти понятия отличаются. работа с архивами и другими инфраструктурами, дающими источники — должна включать сложный отбор и иерархию материалов, из которых берутся данные. а понятие информации — вообще лишнее.

4. фейки и кейсы. эти слова — очень сильно путают.
4.1.
есть исследования, построенные на отдельных случаях (кейсах).
исследования эти потом становятся частью канона, теории строятся на них. потом случаев становится больше, часть догм и канонов пересматривается.
наука должна постоянно отслеживать эти изменения, и уточнять теории и методы, исходя из новых случаев.
если внезапно отрубить у институтов знания связующее звено в треугольнике теория-метод-предмет, у нас выйдет чудище в духе Франкенштейна. так нельзя.

4.2.
слово «фейк» — это лажа. нет фейков.
есть ошибки, недоработки, фальшивки, сфабрикованные артефакты и пр.
зачастую «фейк» — это просто неосмысленный случай. иногда «фейком» оказывается кусок данных, лишённый интерпретации. иногда — наоборот, интерпретация, построенная на устаревшем понимании истины в науке.
короче, говорить «фейк» учёным не стоит. нужно разбираться.

5. данные, на которых построены алгоритмы ИИ — это не артефакты, а трудовые операции. нельзя воспринимать их как нечто готовое к употреблению. мы ведь не едим упаковку от риса или пакет от овощей.
вот и с «данными» так нельзя.

короче, нужно, чтобы отдельные дисциплины аккуратно и последовательно работали с ИИ — как со-производители, а также знающие, умелые пользователи.

точно так же, как есть проблема «ИИ и этики», есть проблема «ИИ и эпистемологии».
нужно выучить всем ещё одно слово на букву «э» и работать с этими проблемами в университете на каждой кафедре. так процветём. иначе — не сможем.

BY провода+болота


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/wiresandswamps/744

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike.
from cn


Telegram провода+болота
FROM American