Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Масштабирование вычислений LLM с использованием скрытых рассуждений: метод с рекуррентной глубиной.

Экспериментальная архитектура LLM, которая способна масштабировать вычисления за счет скрытых рассуждений в латентном пространстве путем итеративного применения рекуррентного блока, что дает возможность развернуть вычисления на произвольную глубину.

Этот метод отличается от традиционных, которые увеличивают вычислительные ресурсы за счет генерации большего количества токенов. Например, в отличие от CoT, предложенный подход не требует специализированных датасетов, работает с небольшими окнами контекста и способен захватывать типы рассуждений, которые сложно выразить словами. В дополнение, модели этой архитектуры требуют меньше памяти для обучения и инференса.

Тестовая модель Huginn-3.5B получила 3.5 млрд параметров и была обучена на 800 млрд. токенов (веб-страницы, научные публикации и программный код) с использованием случайного числа итераций рекуррентного блока для каждой входной последовательности. Чтобы сократить потребление памяти использовалось усеченное обратное распространение, при котором градиенты вычисляются только для последних итераций.

Модель состоит из 3 основных блоков: прелюдии, рекуррентного блока и коды. Прелюдия преобразует входные данные в латентное пространство, рекуррентный блок выполняет итеративные вычисления, а кода преобразует латентное состояние обратно в вероятности токенов. Рекуррентный блок может быть повторен произвольное количество раз, позволяя модели выполнять произвольное количество вычислений перед генерацией токена.

Результаты проведенных тестов на стандартных задачах ARC, HellaSwag, MMLU свидетельствуют, что Huginn-3.5B превосходит традиционные модели на задачах, требующих сложных рассуждений (математические задачи и программирование). Например, на задачах GSM8k и MATH модель показала значительное улучшение производительности при увеличении числа рекуррентных итераций.

⚠️ Модель не подвергалась файнтюну или посттренингу, но благодаря включению instruct-данных во время претрейна, она изначально понимает свой шаблон чата.

⚠️ Чекпоинт на HF обучался всего на 47000 шагах и является академическим проектом.

▶️ Локальный инференс:

# Load the model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("tomg-group-umd/huginn-0125", torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("tomg-group-umd/huginn-0125")


# Modifying the Model's Depth at Test Time
input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
model.eval()
model.to(device)

model(input_ids, num_steps=32)


# Model can be used like a normal HF model
# You can provide `num_steps` directly to the `generate` call
model.eval()
config = GenerationConfig(max_length=256, stop_strings=["<|end_text|>", "<|end_turn|>"],
use_cache=True,
do_sample=False, temperature=None, top_k=None, top_p=None, min_p=None,
return_dict_in_generate=True,
eos_token_id=65505,bos_token_id=65504,pad_token_id=65509)


input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
outputs = model.generate(input_ids, config, tokenizer=tokenizer, num_steps=16)


📌 Лицензирование: Apache 2.0 License.


🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #LatentReasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_analysis_ml/3180
Create:
Last Update:

🌟 Масштабирование вычислений LLM с использованием скрытых рассуждений: метод с рекуррентной глубиной.

Экспериментальная архитектура LLM, которая способна масштабировать вычисления за счет скрытых рассуждений в латентном пространстве путем итеративного применения рекуррентного блока, что дает возможность развернуть вычисления на произвольную глубину.

Этот метод отличается от традиционных, которые увеличивают вычислительные ресурсы за счет генерации большего количества токенов. Например, в отличие от CoT, предложенный подход не требует специализированных датасетов, работает с небольшими окнами контекста и способен захватывать типы рассуждений, которые сложно выразить словами. В дополнение, модели этой архитектуры требуют меньше памяти для обучения и инференса.

Тестовая модель Huginn-3.5B получила 3.5 млрд параметров и была обучена на 800 млрд. токенов (веб-страницы, научные публикации и программный код) с использованием случайного числа итераций рекуррентного блока для каждой входной последовательности. Чтобы сократить потребление памяти использовалось усеченное обратное распространение, при котором градиенты вычисляются только для последних итераций.

Модель состоит из 3 основных блоков: прелюдии, рекуррентного блока и коды. Прелюдия преобразует входные данные в латентное пространство, рекуррентный блок выполняет итеративные вычисления, а кода преобразует латентное состояние обратно в вероятности токенов. Рекуррентный блок может быть повторен произвольное количество раз, позволяя модели выполнять произвольное количество вычислений перед генерацией токена.

Результаты проведенных тестов на стандартных задачах ARC, HellaSwag, MMLU свидетельствуют, что Huginn-3.5B превосходит традиционные модели на задачах, требующих сложных рассуждений (математические задачи и программирование). Например, на задачах GSM8k и MATH модель показала значительное улучшение производительности при увеличении числа рекуррентных итераций.

⚠️ Модель не подвергалась файнтюну или посттренингу, но благодаря включению instruct-данных во время претрейна, она изначально понимает свой шаблон чата.

⚠️ Чекпоинт на HF обучался всего на 47000 шагах и является академическим проектом.

▶️ Локальный инференс:

# Load the model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("tomg-group-umd/huginn-0125", torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("tomg-group-umd/huginn-0125")


# Modifying the Model's Depth at Test Time
input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
model.eval()
model.to(device)

model(input_ids, num_steps=32)


# Model can be used like a normal HF model
# You can provide `num_steps` directly to the `generate` call
model.eval()
config = GenerationConfig(max_length=256, stop_strings=["<|end_text|>", "<|end_turn|>"],
use_cache=True,
do_sample=False, temperature=None, top_k=None, top_p=None, min_p=None,
return_dict_in_generate=True,
eos_token_id=65505,bos_token_id=65504,pad_token_id=65509)


input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
outputs = model.generate(input_ids, config, tokenizer=tokenizer, num_steps=16)


📌 Лицензирование: Apache 2.0 License.


🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #LatentReasoning

BY Анализ данных (Data analysis)









Share with your friend now:
group-telegram.com/data_analysis_ml/3180

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Founder Pavel Durov says tech is meant to set you free
from us


Telegram Анализ данных (Data analysis)
FROM American