Telegram Group & Telegram Channel
У Google вышла крутая статья про новую архитектуру Titan, которая может победить проблему забывания в трансформерах

Традиционные трансформеры очень прожорливы. Архитектура масштабируется квадратично по мере увеличения длины последовательности. Это приводит к проблеме невозможности увеличения контекстного окна и так называемому забыванию, потому что трансформеры также часто склонны аллоцировать внимание на нерелевантный контекст и, чем он больше, тем больше такая накапливаемая ошибка и степень забывчивости модели.

В Titan же подход к памяти немного иной: помимо краткосрочной памяти attention исследователи добавили в архитектуру долгосрочную память (тут вы, возможно, поймали флешбек на LSTM, и не зря). То есть у нас есть некоторый core – стандартное внимание с ограниченным окном, и модуль, который хранит важную информацию из "далекого прошлого". Чтобы решать, какую информацию запоминать, в нем используется метрика сюрприза (чем "неожиданнее" новые данные для модели, тем важнее их запомнить) + есть коэффициент затухания. Все эффективно параллелится.

При этом в статье показали аж три варианта соединить текущее внимание с долгосрочной памятью:

Memory as Context: долгосрочная память используется как контекст для текущего внимания.
Memory as Gating: здесь прямо максимальный мэтч с LSTM, тот же механизм гейтов
Memory as Layer: самый простой вариант, вся память соединена как слой в сетке

MAC оказался лучше всего по перплексии, а MAL чуть быстрее, но теряет в эффективности. В целом такая архитектура может легким движением руки масштабироваться до контекста в 2+ миллиона токенов, сохраняя стабильную точность (трансформеры начинают обычно фейлить уже после отметки 4096). Очень крутая работа получилась у Google, в общем.

Полный текст статьи здесь

P.S. Очень подробный и понятный разбор архитектуры LSTM от нас можно почитать здесь, а вот тут лежит наша большая статья про другие архитектуры-альтернативы трансформеру
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_secrets/5900
Create:
Last Update:

У Google вышла крутая статья про новую архитектуру Titan, которая может победить проблему забывания в трансформерах

Традиционные трансформеры очень прожорливы. Архитектура масштабируется квадратично по мере увеличения длины последовательности. Это приводит к проблеме невозможности увеличения контекстного окна и так называемому забыванию, потому что трансформеры также часто склонны аллоцировать внимание на нерелевантный контекст и, чем он больше, тем больше такая накапливаемая ошибка и степень забывчивости модели.

В Titan же подход к памяти немного иной: помимо краткосрочной памяти attention исследователи добавили в архитектуру долгосрочную память (тут вы, возможно, поймали флешбек на LSTM, и не зря). То есть у нас есть некоторый core – стандартное внимание с ограниченным окном, и модуль, который хранит важную информацию из "далекого прошлого". Чтобы решать, какую информацию запоминать, в нем используется метрика сюрприза (чем "неожиданнее" новые данные для модели, тем важнее их запомнить) + есть коэффициент затухания. Все эффективно параллелится.

При этом в статье показали аж три варианта соединить текущее внимание с долгосрочной памятью:

Memory as Context: долгосрочная память используется как контекст для текущего внимания.
Memory as Gating: здесь прямо максимальный мэтч с LSTM, тот же механизм гейтов
Memory as Layer: самый простой вариант, вся память соединена как слой в сетке

MAC оказался лучше всего по перплексии, а MAL чуть быстрее, но теряет в эффективности. В целом такая архитектура может легким движением руки масштабироваться до контекста в 2+ миллиона токенов, сохраняя стабильную точность (трансформеры начинают обычно фейлить уже после отметки 4096). Очень крутая работа получилась у Google, в общем.

Полный текст статьи здесь

P.S. Очень подробный и понятный разбор архитектуры LSTM от нас можно почитать здесь, а вот тут лежит наша большая статья про другие архитектуры-альтернативы трансформеру

BY Data Secrets











Share with your friend now:
group-telegram.com/data_secrets/5900

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off.
from us


Telegram Data Secrets
FROM American