Telegram Group & Telegram Channel
Google релизнули Alpha Geometry 2: модель решает задачи по геометрии на уровне золотого медалиста Международной Математической Олимпиады

Первая версия Alpha Geometry вышла практически ровно год назад, и относительно нее новая версия сильно прокачалась: если предшественница решала 54% всех задач по геометрии с IMO 2000-2024, то AG2 справляется с 84%. Это, если что, на 84% больше, чем результат o1 👽

При этом AG2 не совсем нейросеть. Это нейро-символьная система. То есть AG2 объединяет в себе и LLM, и символьные строгие методы для вычислений и доказательств. В общих чертах AG2 потрошится на три основных составляющих:

1. Зафайнтюненная Gemini, которой скормили 300 млн теорем. Модель анализирует текст задачи и диаграммы и как бы интуитивно намечает решение: подсказывает, какие свойства фигур могут быть полезны, какие теоремы могут пригодиться и так далее. Она также служит своеобразным энкодером и формализует текст задачи в доменный язык, который умеет воспринимать символьный модуль.

2. Символьный движок DDAR2, в который сгружаются все результаты Gemini. Он берет на себя доказательства по строгим правилам геометрии и проверку и расширение предложенных LM решений с помощью дедукции. В новый DDAR добавили поддержку сложных геометрических конструкций, а также умение работать с "двойными" точками (такие возникают в куче примеров, наверное все помнят со школы задачи вида "докажите, что такая-то точка пересечения лежит на такой-то окружности").

А еще по сравнению с DDAR1 DDAR2 сильно ускорили с помощью C++ реализации и оптимизированного перебора вариантов решений. Раньше все работало на брутфорсе, а сейчас алгоритм переделали и сложность уменьшилась с 𝑂(𝑁⁸) до 𝑂(𝑁³), что увеличило скорость решения в 300 раз!

3. Ну и финальное: деревья поиска SKEST. Это как раз та самая оптимизация. Классические деревья предлагают как бы один шаг решения за раз. А в SKEST мы пробуем несколько вершин разом: это присходит за счет параллельного запуска нескольких деревьев, которые могут делиться между собой найденными стратегиями.

Плюсом ко всему, Alpha Geometry 2 даже умеет автоматически строить к своим решениям рисунки. К сожалению, демо пока не выложили, зато доступна статья.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_secrets/6110
Create:
Last Update:

Google релизнули Alpha Geometry 2: модель решает задачи по геометрии на уровне золотого медалиста Международной Математической Олимпиады

Первая версия Alpha Geometry вышла практически ровно год назад, и относительно нее новая версия сильно прокачалась: если предшественница решала 54% всех задач по геометрии с IMO 2000-2024, то AG2 справляется с 84%. Это, если что, на 84% больше, чем результат o1 👽

При этом AG2 не совсем нейросеть. Это нейро-символьная система. То есть AG2 объединяет в себе и LLM, и символьные строгие методы для вычислений и доказательств. В общих чертах AG2 потрошится на три основных составляющих:

1. Зафайнтюненная Gemini, которой скормили 300 млн теорем. Модель анализирует текст задачи и диаграммы и как бы интуитивно намечает решение: подсказывает, какие свойства фигур могут быть полезны, какие теоремы могут пригодиться и так далее. Она также служит своеобразным энкодером и формализует текст задачи в доменный язык, который умеет воспринимать символьный модуль.

2. Символьный движок DDAR2, в который сгружаются все результаты Gemini. Он берет на себя доказательства по строгим правилам геометрии и проверку и расширение предложенных LM решений с помощью дедукции. В новый DDAR добавили поддержку сложных геометрических конструкций, а также умение работать с "двойными" точками (такие возникают в куче примеров, наверное все помнят со школы задачи вида "докажите, что такая-то точка пересечения лежит на такой-то окружности").

А еще по сравнению с DDAR1 DDAR2 сильно ускорили с помощью C++ реализации и оптимизированного перебора вариантов решений. Раньше все работало на брутфорсе, а сейчас алгоритм переделали и сложность уменьшилась с 𝑂(𝑁⁸) до 𝑂(𝑁³), что увеличило скорость решения в 300 раз!

3. Ну и финальное: деревья поиска SKEST. Это как раз та самая оптимизация. Классические деревья предлагают как бы один шаг решения за раз. А в SKEST мы пробуем несколько вершин разом: это присходит за счет параллельного запуска нескольких деревьев, которые могут делиться между собой найденными стратегиями.

Плюсом ко всему, Alpha Geometry 2 даже умеет автоматически строить к своим решениям рисунки. К сожалению, демо пока не выложили, зато доступна статья.

BY Data Secrets








Share with your friend now:
group-telegram.com/data_secrets/6110

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback.
from us


Telegram Data Secrets
FROM American