Telegram Group & Telegram Channel
Классный отчет со 2 места прошедшей соревы https://www.kaggle.com/competitions/ariel-data-challenge-2024/discussion/543853

В основе лежит Gaussian Process, который есть даже в sklearn, но медленный. Если у нас есть зашумленный ряд или многомерные данные, GP отвечает на вопрос не об истинных значениях в каждой точке, а к какому распределению она принадлежит, опираясь на наблюдаемые значения соседей. Метод байесовский потому что рассматривает все наблюдаемые точки, как случайные величины из многомерного нормального распределения.

GP предполагает, что у близких точек близкие значения, т.е. сигнал в каком-то смысле гладкий. Шум состоит из белого шума равномерного распределения, амплитуду которого надо знать заранее, а так же частотных скорелированных шумов. Каждое наблюдение это истинное значение + шум, поэтому усреднив соседние точки с учетом их корреляций между собой, мы можем лучше оценить их значения. Например, если рассмотреть три точки подряд, значения которых близки, а у третьей сильно отличается, то 3 получит гораздо меньший вес.

Ковариационная функция (ядро) бывает разная, обычно берут радиальную, задавая радиус на котором мы считаем, что локально изменения не сильные. GP в каком-то смысле обучается на данных локально, для каждой окрестности подбирая оптимальные веса восстановления сигнала по соседям.

Я потратил часов 10 в этом соревновании чтобы завести этот метод, обнаружил магию, что он довольно далеко может увести наблюдаемые данные в какой-то локальной области, при этом дальнейшие части пайплайна на этом участке дают более точный результат. Но я бросил, потому что результаты получались так себе, а что шевелить понятия не было. Так что на практике метод сильный, но, возможно придется повозиться, чтобы получить хороший результат.

Бонус: GP на JAX



group-telegram.com/abacabadabacaba404/66
Create:
Last Update:

Классный отчет со 2 места прошедшей соревы https://www.kaggle.com/competitions/ariel-data-challenge-2024/discussion/543853

В основе лежит Gaussian Process, который есть даже в sklearn, но медленный. Если у нас есть зашумленный ряд или многомерные данные, GP отвечает на вопрос не об истинных значениях в каждой точке, а к какому распределению она принадлежит, опираясь на наблюдаемые значения соседей. Метод байесовский потому что рассматривает все наблюдаемые точки, как случайные величины из многомерного нормального распределения.

GP предполагает, что у близких точек близкие значения, т.е. сигнал в каком-то смысле гладкий. Шум состоит из белого шума равномерного распределения, амплитуду которого надо знать заранее, а так же частотных скорелированных шумов. Каждое наблюдение это истинное значение + шум, поэтому усреднив соседние точки с учетом их корреляций между собой, мы можем лучше оценить их значения. Например, если рассмотреть три точки подряд, значения которых близки, а у третьей сильно отличается, то 3 получит гораздо меньший вес.

Ковариационная функция (ядро) бывает разная, обычно берут радиальную, задавая радиус на котором мы считаем, что локально изменения не сильные. GP в каком-то смысле обучается на данных локально, для каждой окрестности подбирая оптимальные веса восстановления сигнала по соседям.

Я потратил часов 10 в этом соревновании чтобы завести этот метод, обнаружил магию, что он довольно далеко может увести наблюдаемые данные в какой-то локальной области, при этом дальнейшие части пайплайна на этом участке дают более точный результат. Но я бросил, потому что результаты получались так себе, а что шевелить понятия не было. Так что на практике метод сильный, но, возможно придется повозиться, чтобы получить хороший результат.

Бонус: GP на JAX

BY adapt compete evolve or die




Share with your friend now:
group-telegram.com/abacabadabacaba404/66

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram.
from de


Telegram adapt compete evolve or die
FROM American