Telegram Group & Telegram Channel
Решил разобрать детальнее статейку парней из Tinkoff Research — ReBRAC: Revisiting the Minimalist Approach to Offline Reinforcement Learning, которая была опубликована на NeurIPS в этом году.

Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.

Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.

Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.

А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.

После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.

Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.

@ai_newz



group-telegram.com/ai_newz/2350
Create:
Last Update:

Решил разобрать детальнее статейку парней из Tinkoff Research — ReBRAC: Revisiting the Minimalist Approach to Offline Reinforcement Learning, которая была опубликована на NeurIPS в этом году.

Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.

Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.

Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.

А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.

После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.

Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2350

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday.
from de


Telegram эйай ньюз
FROM American