Telegram Group & Telegram Channel
Самый большой open-source датасет для In-Context Reinforcement Learning – XLand-100B.

Продолжая тему In-Context Reinforcement Learning и конференции ICML. Недавно чуваки из AIRI (ex. команда из T-Bank Research) релизнули огромный (по меркам RL) датасет в 100 млрд токенов на основе XLand-MiniGrid – open-source аналог среды XLand от DeepMind.

В чем фишка среды и датасета – объясню на примере игры Minecraft:
Представьте, что каждый раз при запуске игры дерево крафта меняется случайным образом, и агенту нужно добыть сложный предмет. Это означает, что перед ним стоит задача: с помощью экспериментирования нужно открыть новую структуру дерева крафта с нуля. Но после того, как агент справился, ему не удастся применить накопленные знания к следующей игре – новое дерево крафта будет скрыто. Это заставляет агента адаптироваться, учиться на ходу и становиться более эффективными в исследовании новой среды. Именно на таком принципе сделан XLand-MiniGrid и отлично подходит для тестирования ICRL.

Но если погрузиться в литературу, то выясняется, что вообще-то открытых датасетов для таких моделей нет, а сами таски достаточно простые и тестируют тривиальную генерализацию.

В этой работе собрали датасет в нетипичных для RL масштабах, реализовали известные бейзлайны и показали, что он может использоваться для ICRL. Из интересного, нашли, что Decision Pretrained Transformer (DPT) сильно проигрывает AD. А сбор датасета занял всего (хе-хе) 50k A100 GPU-часов.

Если In-Context RL не ваша тема, то датасет можно использовать и для всяких других приставок: Offline RL, Multi-Task RL, Goal-Conditioned RL и т.д. В целом, кажется, что датасет должен позволить потрогать scaling-laws более широкому кругу ученых из разных областей близких к RL.

Авторы, кстати, сейчас расширяют команду и ищут стажеров развивать эту тему и дальше скейлить такие модели (и не только).

Если хотите получше разобратсья в RL, я на днях публиковал список ресурсов.

Пейпер
Код и датасет

@ai_newz



group-telegram.com/ai_newz/3084
Create:
Last Update:

Самый большой open-source датасет для In-Context Reinforcement Learning – XLand-100B.

Продолжая тему In-Context Reinforcement Learning и конференции ICML. Недавно чуваки из AIRI (ex. команда из T-Bank Research) релизнули огромный (по меркам RL) датасет в 100 млрд токенов на основе XLand-MiniGrid – open-source аналог среды XLand от DeepMind.

В чем фишка среды и датасета – объясню на примере игры Minecraft:
Представьте, что каждый раз при запуске игры дерево крафта меняется случайным образом, и агенту нужно добыть сложный предмет. Это означает, что перед ним стоит задача: с помощью экспериментирования нужно открыть новую структуру дерева крафта с нуля. Но после того, как агент справился, ему не удастся применить накопленные знания к следующей игре – новое дерево крафта будет скрыто. Это заставляет агента адаптироваться, учиться на ходу и становиться более эффективными в исследовании новой среды. Именно на таком принципе сделан XLand-MiniGrid и отлично подходит для тестирования ICRL.

Но если погрузиться в литературу, то выясняется, что вообще-то открытых датасетов для таких моделей нет, а сами таски достаточно простые и тестируют тривиальную генерализацию.

В этой работе собрали датасет в нетипичных для RL масштабах, реализовали известные бейзлайны и показали, что он может использоваться для ICRL. Из интересного, нашли, что Decision Pretrained Transformer (DPT) сильно проигрывает AD. А сбор датасета занял всего (хе-хе) 50k A100 GPU-часов.

Если In-Context RL не ваша тема, то датасет можно использовать и для всяких других приставок: Offline RL, Multi-Task RL, Goal-Conditioned RL и т.д. В целом, кажется, что датасет должен позволить потрогать scaling-laws более широкому кругу ученых из разных областей близких к RL.

Авторы, кстати, сейчас расширяют команду и ищут стажеров развивать эту тему и дальше скейлить такие модели (и не только).

Если хотите получше разобратсья в RL, я на днях публиковал список ресурсов.

Пейпер
Код и датасет

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/3084

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels.
from de


Telegram эйай ньюз
FROM American