Telegram Group Search
⚡️ o3-mini раскатят на пользователей уже через пару недель

От этом сообщил сам Альтман в своем блоге. Он объявил, что работа над версией, включая тестирование, закончена, и что компания начинает работу над деплоем. Модель будет доступна за те же 200 долларов, так что слухи о 2к за подписку оказались неправдой (пока что).

Это не все: в реплаях на вопрос про то, насколько о3-mini лучше o1-pro, Сэм сказал «хуже во многих вещах, но быстрее». А вот полномасштабная o3, по словам CEO, будет гораздо умнее o1-pro, «не говоря уже об о3-pro»

🥳
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
o3 – не единственная новость от OpenAI на сегодня. Technology Review сообщает, что компания работает над секретом долголетия

Оказывается, последнее время OpenAI плотно работали со стартапом Retro, в который, кстати, уже несколтко лет основательно инвестирует Альтман. Главная цель Retro – повысить общую продолжительность жизни человека на 10 лет.

TR сообщают, что за год сотрудничества OpenAI с Retro уже разработали модель GPT-4b micro. Ее обучили предлагать способы реинжиниринга факторов белка для повышения эффективности их функций. Уже даже есть первые результаты: в статье написано, что с помощью модели ученым удалось изменить два фактора Яманаки так, что они стали более чем в 50 раз эффективнее.

Сама модель пока недоступна, и еще находится на уровне внутренних демо и тестирования в Retro. Технических деталей тоже немного. Известно только, что GPT-4b micro, также, как и AlphaFold, обучалась на последовательностях белков, но архитектура у нее другая.

Статья: www.technologyreview.com/2025/01/17/1110086/openai-has-created-an-ai-model-for-longevity-science/
История о том, как молодой репортер ушел с престижной должности в огромной компании в маленький стартап и стал миллиардером

В 2016 году Джек Кларк занимал довольно высокооплачиваемую должность в Bloomberg. Но однажды он внезапно пришел к руководителю и сказал, что уходит в только что образовавшийся стартап. Тот отговаривал парня и убеждал, что это ужасная идея, но Кларк проигнорировал его и ушел.

Тем стартапом был OpenAI. В нем Джек проработал 4 года, а затем ушел и… стал одним из соучредителей Anthropic.

Сейчас его состояние оценивается в несколько миллиардов долларов.
Внезапно: OpenAI спонсировали EpochAI в создании бенчмарка FrontierMath и имели доступ к данным

Сразу для контекста: FrontierMath был создан недавно (пост) и позиционировался как супер-сложный закрытый математический бенчмарк. Когда он вышел, самые передовые модели набирали на нем порядка 2%. И это именно результатами на этом бенчмарке так хвастались везде и всюду OpenAI, когда представляли o3: она якобы набрала на нем аж 25% (пост).

А теперь оказывается, что OpenAI имели доступ к вопросам и ответам. В этом признались сами EpochAI после того как анонимный пользователь выложил на lesswrong пост, в котором рассказал о том, что FrontierMath спонсировался OpenAI. По его словам, финансовая коммуникация была непрозначной, и даже основная часть сотрудников EpochAI и математики, которые придумывали задачи для бенчмарка, были не в курсе.

EpochAI вину признали, но заявили, что их связывало NDA. Они подтвердили, что OpenAI имеет доступ к большинству задач бенчмарка кроме hold-out сета, но сказали, что между ними и OpenAI есть "устное соглашение о том, что эти данные не будут использоваться для обучения" 🤦
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Строим рекомендательную систему фильмов на Kaggle

Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬

Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.

Что будем делать на вебинаре:
• Разберем имеющиеся данные фильмов с их оценками
• Проведем предобработку данных
• Построим рекомендательную систему на основе машинного обучения
•Проведем расчет и анализ метрик на основе результатов работы модели

🕗Встречаемся 21 января 19:00 по мск

Вебинар будет интересен как новичкам, так и уже опытным специалистам

Зарегистрироваться на бесплатный вебинар
Трансформер научили предсказывать паттерны активности человеческого мозга на 5 секунд вперед

При этом для предсказания нужны данные всего по 21 секунде сканирования 379 областей мозга. В основе – time series трансформер с 8 головами внимания.

На одной точке предсказания модели достигают MSE 0,0013 (для такой задачи это просто вау). Правда после 7 шага ошибки начинают накапливаться по шаблону цепи Маркова, и, таким образом, после пятой секунды прогнозы уже нельзя использовать. Но на этих пяти секундах корреляция >0,85 и, более того, модель очень точно сохраняет функциональные связи между областями мозга.

Исследование, к слову, не просто очень интересное с точки зрения ресерча способностей трансформера (но, кстати, так и до чтения мыслей недалеко), но и имеет большую практическую значимость. Например, в мире очень много пациентов, которые не выдерживают длительные сеансы МРТ, а это первый подход, который, исходя из требуемого количества точек для предсказания и точности прогнозов, действительно имеет шанс на использование.

Статья: Predicting Human Brain States with Transformer
Anthropic такие: да мы лучшие в alignment’е

Также Anthropic:
Интересно: издание Axios сообщает, что 30 января Альтман созвал собрание правительства США

Инсайдеры говорят, что на повестке будет «большой прорыв в области ИИ супер-агентов».

😐
Please open Telegram to view this post
VIEW IN TELEGRAM
Альтман отреагировал на утренний хайп про собрание в Вашингтоне

Что сказать. Жаль.
DeepSeek релизнули веса своей новой ризонинг модели DeepSeek-R1

Напоминаем, что саму модель анонсировали в конце ноября, но все это время была доступна только ее preview версия (пост). Метрик по полноценной R1 пока нет, но учитывая, насколько сильной была превью (к посту прикрепили картинку с ее метриками), ждем чего-то феерического.

Возможно даже, что R1 будет лучше o1, учитывая, что превью версия обгоняла o1-preview на MATH и AIME 2024.

В остальном тех.деталей пока нет, известно только, что в модельке 685 B параметров, а длина цепочек ризонинга скорее всего будет больше 100к токенов. Вместе с R1, кстати, выкатили еще R1-Zero (разница пока неочевидна).

Ждем тех.отчет и метрики!
Ваши задачи требуют мощных вычислительных ресурсов? Локальные мощности не справляются с обучением нейросетей?

immers.cloud предлагает решение:

💰 Экономия: тарифы от 23 рублей/час, оплата только за фактическое время использования
⚡️ Быстрый старт: видеокарты и серверы готовы к работе за пару минут.
📈 Гибкость и масштабируемость: 11 видеокарт на выбор, быстрый старт и масштабирование 
🔧 Удобство: готовые образы для ML задач, чтобы не тратить время на настройку

Платформа также предлагает образ Ubuntu 22.04 с предустановленными драйверами, библиотеками CUDA 12.3 и CudNN: с ним можно развернуть поверх него необходимые инструменты для обучения, разработки или работы с нейросетями.

🎁 Для наших подписчиков действует бонус: +20% бонус к пополнению баланса
Бенчмарки по R1 от DeepSeek не заставили себя ждать

Перформанс на уровне o1 (не везде, но да). Очень сильные результаты по математике и кодингу.

Модель уже доступна в чате chat.deepseek.com/ и в API. В чате бесплатно 50 сообщений в день, цены на API очень демократичные: 0.55$/M токенов на инпут без промпт кэша и 0.14$/M с ним, аутпут 2.19$/M. Это дешевле всех моделек OpenAI и Anthropic (например, o1 стоит $15.00/M input и $60.00/M output).

Выложили дистиллированные варианты, аж 6 штук. Размеры: 1.5B, 7B, 14B, 32B, 8B, 70B. 32 и 70 на уровне o1-mini, 1.5B аутперформит GPT-4o и Сlaude Sonnet (!)

Ну мед 🍯
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
А это, знакомьтесь, Сэм Альтман по-китайски: CEO DeepSeek Лиан Венфенг

Вчера, после релиза R1, он был приглашен на встречу с Ли Цяном, премьер-министром Китая (который является вторым по значимости человеком в Китае после Си Цзиньпина).

Если DeepSeek сделали R1 в условиях ограниченных вычислений и средств, представьте, что они могут сделать с субсидиями Китая.

Человек года 2025 загружается 🔵
Please open Telegram to view this post
VIEW IN TELEGRAM
Как мощные алгоритмы матричных разложений применяются в рекомендательных системах?

Расскажем на открытом уроке «SVD и ALS на службе рекомендательных систем», посвященному курсу Machine Learning. Advanced

Изучим и применим на практике такие методы как SVD и ALS для построения рекомендательных систем

👉 Регистрация и подробности: https://otus.pw/zcP8O/?erid=2W5zFK8hyUL 

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
2025/01/21 08:08:28
Back to Top
HTML Embed Code: