Telegram Group & Telegram Channel
Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance #paper

В относительно новой статье (март 2024) предлагается новый способ sampling guidance для unconditional generation с помощью диффузионных моделей, который, к тому же, применим и к задаче conditional generation тоже.

Авторы отмечают, что своим успехом диффузионные модели во многом обязаны classifier и classifier-free guidance (далее CG и CFG, соответственно) — методам sampling guidance, которые позволяют достигать более точного следования condition. Однако у этих методов есть несколько проблем: в случае с CG необходимо обучать классификатор под каждый класс, также уменьшается разнообразие генераций, эти методы нельзя применить к unconditional generation.

В качестве альтернативы предлагается некоторое переосмысление CFG для unconditional generationPerturbed-Attention Guidance или PAG. Авторы замечают, что в блоках SA (self attention) матрицы Q и K отвечают за структуру генерации, а V за её наполнение (content). Так как основная часть артефактов в рамках uncoditional generation представляет из себя структурные неточности, то в рамках подхода в формуле SA Softmax(Q * K^T) заменяется на единичную матрицу. Теперь, по аналогии с CFG на каждом шаге генерации латент расшумлённый с PAG вычитается из unconditional латента с определённым коэффициентом. Авторы работы утверждают, что получающиеся траектории уводят диффузионный процесс в сторону лучших генераций, что подтверждается их экспериментами.

Стоит так же отметить, что PAG можно комбинировать с CFG в задаче conditional generation, что также приводит к улучшению качества.

🔥Project
💻Github (diffusers)
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/74
Create:
Last Update:

Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance #paper

В относительно новой статье (март 2024) предлагается новый способ sampling guidance для unconditional generation с помощью диффузионных моделей, который, к тому же, применим и к задаче conditional generation тоже.

Авторы отмечают, что своим успехом диффузионные модели во многом обязаны classifier и classifier-free guidance (далее CG и CFG, соответственно) — методам sampling guidance, которые позволяют достигать более точного следования condition. Однако у этих методов есть несколько проблем: в случае с CG необходимо обучать классификатор под каждый класс, также уменьшается разнообразие генераций, эти методы нельзя применить к unconditional generation.

В качестве альтернативы предлагается некоторое переосмысление CFG для unconditional generationPerturbed-Attention Guidance или PAG. Авторы замечают, что в блоках SA (self attention) матрицы Q и K отвечают за структуру генерации, а V за её наполнение (content). Так как основная часть артефактов в рамках uncoditional generation представляет из себя структурные неточности, то в рамках подхода в формуле SA Softmax(Q * K^T) заменяется на единичную матрицу. Теперь, по аналогии с CFG на каждом шаге генерации латент расшумлённый с PAG вычитается из unconditional латента с определённым коэффициентом. Авторы работы утверждают, что получающиеся траектории уводят диффузионный процесс в сторону лучших генераций, что подтверждается их экспериментами.

Стоит так же отметить, что PAG можно комбинировать с CFG в задаче conditional generation, что также приводит к улучшению качества.

🔥Project
💻Github (diffusers)
📜Paper

@gentech_lab

BY Gentech Lab





Share with your friend now:
group-telegram.com/gentech_lab/74

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look.
from de


Telegram Gentech Lab
FROM American