Telegram Group Search
Первый и второй признаки равенства треугольников, 2-й шаг, когда треугольники не даны явно #7класс #геометрия #начинающим

Источник: учебник М.А.Волчкевича
Есть следующая простая (и хорошая) планиметрическая задача Микеля. На каждой стороне треугольника взята точка, отличная от вершин. Тогда три окружности, каждая из которых проходит через вершину треугольника и две точки, взятые на сторонах, выходящих из нее, пересекаются в одной точке.

Имеет место быть и такой трехмерный аналог. На каждом ребре тетраэдра взята точка, отличная от вершин. Тогда четыре сферы, каждая из которых проходит через вершину тетраэдра и три точки, взятые на ребрах, выходящих из нее, пересекаются в одной точке.
Инверсия, но не тупая (1).pdf
313.3 KB
Листочек на инверсию. Наверное не сильно оригинальный.
Дан треугольник ABC из каждой вершины провели красную и синию прямые, которые симметричны относительно биссектрис соответствующих углов. Оказалось, что они образовали два не равных треугольника с общим ортоцентром. Докаите, что описанные окружности этих треугольников имеют общую точку на описанной окружности исходного.
Дан треугольник ABC. Пусть K -- точка касания вписанной окружности со стороной AC. Докажите, что окружности, касающиеся описанной окружности треугольника ABC, луча BK и продолжений AC за точки A и С, равны.
Каким минимальным числом непрозрачных попарно непересекающихся шаров можно загородить точечный источник света? А если все шары равны?
https://etudes.ru/etudes/Lobachevskian-geometry-Poincare-disk-model/

у Мат. Этюдов недавно появились разные картинки и разговоры на тему [модели Пуанкаре] плоскости Лобачевского

в частности, можно смотреть на разные замощения плоскости Лобаческого одинаковыми правильными многоугольниками
Можно ли сцепить концы у каждой из трех мишур так, чтобы получились три кольца, которые нельзя разцепить, но при разрезании любого из них они расцеплялись бы? А если мишур больше, чем три?
Вторая часть статьи про сопряжение Клауса Клоусона от Миши Сидоренко!
Forwarded from sydor
Advanced_Clawson_Conjugates.pdf
1.4 MB
Если синие дуги имеют равную градусную меру, то красные отрезки имеют равную длину.

P.S. на предыдущей картинке была ошибка, спасибо обратившим внимание!
2025/01/12 06:06:19
Back to Top
HTML Embed Code: