Telegram Group & Telegram Channel
Retentive Network: A Successor to Transformer for Large Language Models
Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, Furu Wei
Статья: https://arxiv.org/abs/2307.08621
Код: https://github.com/microsoft/unilm/tree/master/retnet (https://github.com/microsoft/torchscale/blob/main/examples/fairseq/models/retnet.py)

Очередные новости гибридизации в нашем вестнике сельского хозяйства.

Microsoft Research совместно с Tsinghua University предложили новую архитектуру под названием Retentive Network (RetNet).

Все хотят эффективный параллелизм при обучении, O(1) инференс и, конечно, хороший перформанс. Выберите любые два: у рекуррентных сетей традиционно не было параллелизма, у классических трансформеров дешёвого инференса, а у линейных трансформеров -- хорошего качества. Это всё, конечно, с поправкой на современные модели типа S4, RWKV, LRU, но авторы считают, что они все таки где-то не дотягивают и однозначного победителя трансформеров нету. Но теперь типа его придумали.

В чём суть?

RetNet состоит из стека L блоков с residual connection и pre-LayerNorm, как и трансформер. Внутри каждого RetNet блока есть блочок Multi-Scale Retention (MSR) и блочок FFN. Вычисления выглядят классически для трансформера:

Y^l = MSR(LN(X^l)) + X^l
X^{l+1} = FFN(LN(Y^l)) + Y^l,
где FFN(X) = gelu(XW_1)W_2

То есть MSR это замена MHSA (Multi-head Self Attention).

Вход x=x_1, …, x_n RetNet обрабатывает авторегрессионно. Входные векторы x сначала эмбеддятся в X^0 размерности |x|×d_model, где d_model -- это hidden dimension, а затем в каждом слое l из L всего происходит вычисление контекстуализированных репрезентаций X^l = RetNet_l(X^{l−1}). На этом уровне от трансформера отличий нет, все отличия внутри MSR.

Собственно на смену механизму Attention приходит механизм Retention. Жду продолжения рифм. Механизм Retention имеет форму как параллельную, так и рекуррентную, то есть можно обучать в параллельной, а исполнять в рекуррентной.

Входная последовательность X (размерности |x|×d_model) проецируется в v_n = X_n · w_V, а моделирование последовательности является отображением входа v_n в выход o_n через скрытые состояния s_n. В итоге маппинг можно описать рекуррентностью:

s_n = As_{n−1} + K^⊺_n v_n
o_n = Q_n s_n = sum_{m=1}^{n} Q_n A^{n−m} K^⊺_m v_m

где A -- матрица d×d, K и Q -- векторы 1×d.

Проекции Q и K контекстно-зависимы Q = XW_Q, K = XW_K, где W_Q, W_K -- обучаемые матрицы размерности d×d.

Матрица A диагонализируется (снова через комплексные числа как в LRU, https://www.group-telegram.com/de/gonzo_ML.com/1734):
A = Λ(γe^{iθ})Λ^{−1} и выражение для o_n переписывается так, что Λ отправляются в матрицы W_Q, W_K и после преобразований получается сумма входов, взвешенных с относительными позиционными эмбеддингами. Формулы лучше смотреть на картинке, чем тут текстом парсить.

В итоге в параллельной формулировке механизм Retention выглядит так:

Q = (XW_Q) ⊙ Θ
K = (XW_K) ⊙ conjugate(Θ)
V = XW_V
Θ_n = e^{inθ} (позиционные эмбеддинги типа xPos из Lex Transformer, https://arxiv.org/abs/2212.10554)

/γ^{n−m}, n ≥ m
D_{nm} = { (causal masking and exponential decay)
\0, n < m

Retention(X) = (QK^⊺ ⊙ D)V

Ну то есть в целом весьма похоже на обычное внимание. Ушёл softmax, добавили xPos, появилась рекуррентная формулировка.

В рекуррентной формулировке это записывается как

S_n = γS_{n−1} + K^⊺ V_n
Retention(X_n) = Q_n S_n, n = 1, · · · , |x|

Есть ещё гибридная форма Chunkwise Recurrent Representation для длинных последовательностей, когда они разбиваются на чанки.

Это был одиночный Retention. Далее идёт Gated Multi-Scale Retention, это аналог многоголовости трансформера, когда каждая голова Retention работает по своему кусочку пространства размерности d из полного d_model. У каждой головы свои матрицы W_Q, W_K, W_V и у каждой головы свой параметр γ, который про экспоненциальное затухание. В работе эти параметры выставляли одинаковым образом у разных слоёв.

Итоговый механизм выглядит так:



group-telegram.com/gonzo_ML/1753
Create:
Last Update:

Retentive Network: A Successor to Transformer for Large Language Models
Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, Furu Wei
Статья: https://arxiv.org/abs/2307.08621
Код: https://github.com/microsoft/unilm/tree/master/retnet (https://github.com/microsoft/torchscale/blob/main/examples/fairseq/models/retnet.py)

Очередные новости гибридизации в нашем вестнике сельского хозяйства.

Microsoft Research совместно с Tsinghua University предложили новую архитектуру под названием Retentive Network (RetNet).

Все хотят эффективный параллелизм при обучении, O(1) инференс и, конечно, хороший перформанс. Выберите любые два: у рекуррентных сетей традиционно не было параллелизма, у классических трансформеров дешёвого инференса, а у линейных трансформеров -- хорошего качества. Это всё, конечно, с поправкой на современные модели типа S4, RWKV, LRU, но авторы считают, что они все таки где-то не дотягивают и однозначного победителя трансформеров нету. Но теперь типа его придумали.

В чём суть?

RetNet состоит из стека L блоков с residual connection и pre-LayerNorm, как и трансформер. Внутри каждого RetNet блока есть блочок Multi-Scale Retention (MSR) и блочок FFN. Вычисления выглядят классически для трансформера:

Y^l = MSR(LN(X^l)) + X^l
X^{l+1} = FFN(LN(Y^l)) + Y^l,
где FFN(X) = gelu(XW_1)W_2

То есть MSR это замена MHSA (Multi-head Self Attention).

Вход x=x_1, …, x_n RetNet обрабатывает авторегрессионно. Входные векторы x сначала эмбеддятся в X^0 размерности |x|×d_model, где d_model -- это hidden dimension, а затем в каждом слое l из L всего происходит вычисление контекстуализированных репрезентаций X^l = RetNet_l(X^{l−1}). На этом уровне от трансформера отличий нет, все отличия внутри MSR.

Собственно на смену механизму Attention приходит механизм Retention. Жду продолжения рифм. Механизм Retention имеет форму как параллельную, так и рекуррентную, то есть можно обучать в параллельной, а исполнять в рекуррентной.

Входная последовательность X (размерности |x|×d_model) проецируется в v_n = X_n · w_V, а моделирование последовательности является отображением входа v_n в выход o_n через скрытые состояния s_n. В итоге маппинг можно описать рекуррентностью:

s_n = As_{n−1} + K^⊺_n v_n
o_n = Q_n s_n = sum_{m=1}^{n} Q_n A^{n−m} K^⊺_m v_m

где A -- матрица d×d, K и Q -- векторы 1×d.

Проекции Q и K контекстно-зависимы Q = XW_Q, K = XW_K, где W_Q, W_K -- обучаемые матрицы размерности d×d.

Матрица A диагонализируется (снова через комплексные числа как в LRU, https://www.group-telegram.com/de/gonzo_ML.com/1734):
A = Λ(γe^{iθ})Λ^{−1} и выражение для o_n переписывается так, что Λ отправляются в матрицы W_Q, W_K и после преобразований получается сумма входов, взвешенных с относительными позиционными эмбеддингами. Формулы лучше смотреть на картинке, чем тут текстом парсить.

В итоге в параллельной формулировке механизм Retention выглядит так:

Q = (XW_Q) ⊙ Θ
K = (XW_K) ⊙ conjugate(Θ)
V = XW_V
Θ_n = e^{inθ} (позиционные эмбеддинги типа xPos из Lex Transformer, https://arxiv.org/abs/2212.10554)

/γ^{n−m}, n ≥ m
D_{nm} = { (causal masking and exponential decay)
\0, n < m

Retention(X) = (QK^⊺ ⊙ D)V

Ну то есть в целом весьма похоже на обычное внимание. Ушёл softmax, добавили xPos, появилась рекуррентная формулировка.

В рекуррентной формулировке это записывается как

S_n = γS_{n−1} + K^⊺ V_n
Retention(X_n) = Q_n S_n, n = 1, · · · , |x|

Есть ещё гибридная форма Chunkwise Recurrent Representation для длинных последовательностей, когда они разбиваются на чанки.

Это был одиночный Retention. Далее идёт Gated Multi-Scale Retention, это аналог многоголовости трансформера, когда каждая голова Retention работает по своему кусочку пространства размерности d из полного d_model. У каждой головы свои матрицы W_Q, W_K, W_V и у каждой головы свой параметр γ, который про экспоненциальное затухание. В работе эти параметры выставляли одинаковым образом у разных слоёв.

Итоговый механизм выглядит так:

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/1753

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion.
from de


Telegram gonzo-обзоры ML статей
FROM American