Telegram Group & Telegram Channel
Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)



group-telegram.com/olympgeom/1573
Create:
Last Update:

Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)

BY Олимпиадная геометрия


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/olympgeom/1573

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks.
from de


Telegram Олимпиадная геометрия
FROM American