Warning: file_put_contents(aCache/aDaily/post/rizzearch/-669-670-671-672-): Failed to open stream: No space left on device in /var/www/group-telegram/post.php on line 50
rizzearch | Telegram Webview: rizzearch/669 -
Telegram Group & Telegram Channel
ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate

на определенном этапе заведения модели, которая не заводится, начинаешь задумываться про гиперы, которые стоят за оптимизатором (помимо лернинг рейта) и самого оптимизатора. например, на беты

и как мы уже упоминали, в то время как первая бета отвечает за сохранение градиентов для первого момента, вторая бета отвечает за сохранение истории в бегущем среднем вторых моментов градиента (что логично). и с точки зрения теории адам (да и в принципе все адаптивные методы) довольно плохо сходится, если только не выбирать эту вторую бету в зависимости от поставленной таски

но вот авторы-японцы (возможно) смогли это исправить и нескромно назвали метод ADaptive gradient method with the OPTimal convergence rate

и вот для того, чтобы вторая бета не имела такой сильный импакт на сходимость, они к удивлению меняют расчет первого момента - дополнительно делят градиент на данном таймстепе на корень из второго момента. простенько, со вкусом, достаточно нетривиально для данной специфики

по экспам где-то даже резы лучше достигаются - в том числе и на 7б лламе прогоняли (правда только ммлу, как любит замечать наш дорогой друг, без алаймент бенчмарков это не особо релевантно) + для мниста и цифара брали только резнет-18 но допууууустим

к тому же тут есть тоже предположение в их теории - о том что второй момент градиентов ограничен (менее сильное предположение в сравнении с предыдущим о том, что первый момент тож ограничен)

позабавило еще то, что в вывод в конце они зачем-то решили вставить проблему социального импакта мл алгоритмов (хотя статья чисто про оптимизатор)

а код оч классный, челики в сурс коде торча знатно так разбираются

👀LINK



group-telegram.com/rizzearch/669
Create:
Last Update:

ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate

на определенном этапе заведения модели, которая не заводится, начинаешь задумываться про гиперы, которые стоят за оптимизатором (помимо лернинг рейта) и самого оптимизатора. например, на беты

и как мы уже упоминали, в то время как первая бета отвечает за сохранение градиентов для первого момента, вторая бета отвечает за сохранение истории в бегущем среднем вторых моментов градиента (что логично). и с точки зрения теории адам (да и в принципе все адаптивные методы) довольно плохо сходится, если только не выбирать эту вторую бету в зависимости от поставленной таски

но вот авторы-японцы (возможно) смогли это исправить и нескромно назвали метод ADaptive gradient method with the OPTimal convergence rate

и вот для того, чтобы вторая бета не имела такой сильный импакт на сходимость, они к удивлению меняют расчет первого момента - дополнительно делят градиент на данном таймстепе на корень из второго момента. простенько, со вкусом, достаточно нетривиально для данной специфики

по экспам где-то даже резы лучше достигаются - в том числе и на 7б лламе прогоняли (правда только ммлу, как любит замечать наш дорогой друг, без алаймент бенчмарков это не особо релевантно) + для мниста и цифара брали только резнет-18 но допууууустим

к тому же тут есть тоже предположение в их теории - о том что второй момент градиентов ограничен (менее сильное предположение в сравнении с предыдущим о том, что первый момент тож ограничен)

позабавило еще то, что в вывод в конце они зачем-то решили вставить проблему социального импакта мл алгоритмов (хотя статья чисто про оптимизатор)

а код оч классный, челики в сурс коде торча знатно так разбираются

👀LINK

BY rizzearch







Share with your friend now:
group-telegram.com/rizzearch/669

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin.
from de


Telegram rizzearch
FROM American