Notice: file_put_contents(): Write of 14076 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50 какая-то библиотека | Telegram Webview: selfmadeLibrary/776 -
ChatGPT опять наврал? Расследование на примере ANOVA-теста
Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.
Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.
Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.
🔤 Как я проверяла результаты?
1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты. 2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода. ▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.
Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.
Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.
🐈⬛Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?
ChatGPT опять наврал? Расследование на примере ANOVA-теста
Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.
Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.
Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.
🔤 Как я проверяла результаты?
1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты. 2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода. ▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.
Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.
Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.
🐈⬛Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?
For tech stocks, “the main thing is yields,” Essaye said. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment.
from de