Telegram Group & Telegram Channel
uAnalytiCon
(Paul Benacerraf, What Mathematical Truth Could Not Be)
Пожалуй, многие слышали историю о «посылке принцессы Маргарет», но не все могут точно указать источник, из которого она берётся, и то, какую роль там играет. Анекдот про то, что дело осталось за малым — только лишь уговорить принцессу Маргарет — рассказан Полом Бенацеррафом в статье "What Mathematical Truth Could Not Be", в которой тот по прошествии приблизительно 30 лет размышляет о двух своих самых знаменитых статьях, "What Numbers Could Not Be" и "Mathematical Truth". Эта история связывается им с философскими следствиями метаматематических результатов (в частности, теорем Гёделя о неполноте и теорем Лёвенгейма-Скулема; последних, кстати, тоже две, хотя некоторые об этом и не подозревают). Получить метаматематический результат — это как уговорить Коэнов женить их любимого сыночка на нееврейке. Это трудно, ведь так внуки Коэнов будут гоями, чего Коэны просто не могут допустить. Да ладно Коэны, их-то кое-как можно уговорить, да и метаматематических результатов хватает — бери любой. Это довольно простая часть. Однако для того, чтобы получить какие-то философские следствия из любого метаматематического результата, ещё требуется «посылка принцессы Маргарет». Обоснованность вывода философских следствий из метаматематического результата зависит в первейшую очередь от этой самой посылки. Посылки, которая должна утверждать, что между формализомом, для которого имеет место используемый метаматематический результат, и чем-то неформальным и интересным с философской точки зрения (естественным языком, сознанием, свободой воли и проч.) имеет или не имеет место релевантного вида соответствие или даже своего рода изоморфизм. А вот получить такую «посылку принцессы Маргарет» с её соответствующим обоснованием — это работа посложнее, чем уговорить Коэнов женить их любимого сыночка на настоящей принцессе. Поэтому, как пишет Пол Бенацерраф, «когда нам предъявляют аргумент, претендующий на то, чтобы сделать важный философский вывод из того или иного метаматематического результата, мы сразу же должны насторожиться».



group-telegram.com/uanalyticon/485
Create:
Last Update:

Пожалуй, многие слышали историю о «посылке принцессы Маргарет», но не все могут точно указать источник, из которого она берётся, и то, какую роль там играет. Анекдот про то, что дело осталось за малым — только лишь уговорить принцессу Маргарет — рассказан Полом Бенацеррафом в статье "What Mathematical Truth Could Not Be", в которой тот по прошествии приблизительно 30 лет размышляет о двух своих самых знаменитых статьях, "What Numbers Could Not Be" и "Mathematical Truth". Эта история связывается им с философскими следствиями метаматематических результатов (в частности, теорем Гёделя о неполноте и теорем Лёвенгейма-Скулема; последних, кстати, тоже две, хотя некоторые об этом и не подозревают). Получить метаматематический результат — это как уговорить Коэнов женить их любимого сыночка на нееврейке. Это трудно, ведь так внуки Коэнов будут гоями, чего Коэны просто не могут допустить. Да ладно Коэны, их-то кое-как можно уговорить, да и метаматематических результатов хватает — бери любой. Это довольно простая часть. Однако для того, чтобы получить какие-то философские следствия из любого метаматематического результата, ещё требуется «посылка принцессы Маргарет». Обоснованность вывода философских следствий из метаматематического результата зависит в первейшую очередь от этой самой посылки. Посылки, которая должна утверждать, что между формализомом, для которого имеет место используемый метаматематический результат, и чем-то неформальным и интересным с философской точки зрения (естественным языком, сознанием, свободой воли и проч.) имеет или не имеет место релевантного вида соответствие или даже своего рода изоморфизм. А вот получить такую «посылку принцессы Маргарет» с её соответствующим обоснованием — это работа посложнее, чем уговорить Коэнов женить их любимого сыночка на настоящей принцессе. Поэтому, как пишет Пол Бенацерраф, «когда нам предъявляют аргумент, претендующий на то, чтобы сделать важный философский вывод из того или иного метаматематического результата, мы сразу же должны насторожиться».

BY uAnalytiCon




Share with your friend now:
group-telegram.com/uanalyticon/485

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For tech stocks, “the main thing is yields,” Essaye said. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so.
from de


Telegram uAnalytiCon
FROM American