group-telegram.com/def_model_train/1059
Last Update:
Поскольку сейчас выходит тонна ресерча про то, как сварить свою ризонинг модель, решила здесь как-то суммировать то, что есть к настоящему времени. Первая пачка статей о том, как связаны между собой SFT-претрен и RL и вообще про то, при каких условиях ризонинг нам в чем-то помогает
Отличный разбор этой статьи уже был в Сиолошной, я из нее хочу выделить несколько моментов:
- Авторы описывают 4 вида когнитивных приемов, которые модели могут использовать, чтобы добиться лучших результатов при решении проблем: 1) делать шаг назад и пересматривать свой ответ, когда обнаруживается ошибка, 2) перепроверка промежуточных результатов, 3) дробление на подзадачи, 4) решение задачи "в обратную сторону", то есть, зная ответ, пытаться догадаться, какие шаги к нему привели
- У Qwen и без какого-либо дообучения в 62% процентов размышлений была самопроверка. В отличие от моделей семейства LLaMA, где такого почти не наблюдалось
- Для эксперимента авторы собрали примеры цепочек рассуждения Claude-3.5-Sonnet, в которых бы использовались описанные выше 4 приема, и после SFT-тренировки на них скоры LLaMA стали заметно выше Qwen
- Интересно при этом, что даже при тренировке на цепочках с ошибками (в одном из шагов или с неправильнмы ответом), качество итоговой модели практически никак не отличалось от той, что тренировалась только на "правильных" цепочках
- Аналогично проверяли гипотезу о том, не помогает ли просто длина ответа решать задачи лучше. То есть, видим ли мы улучшение только из-за того, что модель может рассуждать дольше, или из-за того, что в обучении было что-то полезное. Для этого также обучали модель на "пустых" chains-of-thought, где просто нужную длину добили каким-нибудь токеном (по аналогии со статьями про think tokens ранее, где модели как будто просто давали "время" подумать перед ответом). Это никакого прироста скоров не дало
- После SFT-тренировки модели также дообучали с помощью RL играть в Countdown. Там оказывалось, что RL больше "продвигает" наиболее эмпирически полезные для игры стратегии – верификацию и пересматривание ответа – и подавляет не особо нужные
1/2