Telegram Group & Telegram Channel
Наконец-то дочитал Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights by Joanne Rodrigues. Много страниц, мелкий шрифт, очень плотный по содержанию текст.

Акадмический бэкграунд автора (магистратуры LSE и Беркли по математике, политологии и демографии) просматривается с самого начала. От методологии до кода на R, с кучей отступлений и инфомационных справок. В конце концов, когда еще в книге по аналитике прочитаешь про утилитаризм Бентама.

Книга состоит из пяти частей. Первая — методологическая. Вторая посвящена базовым статистическим методам (распределения, создание метрик, введение в A/B-тесты). Третья часть о предиктивных моделях (регрессии, деревья решений, SVM). Четвертая — о Casual inference методах (difference-in-difference, разрывный регрессионный дизайн, матчинг, аплифт-моделирование). Пятая часть про реализацию большей части методов на R.

Первая часть самая интересная и самая важная. В ней всего три главы. В первой главе проговаривается идея, что поведение пользователей сложное, у них разные мотивы, и мы никогда не обладаем всей полнотой информации. И для того, чтобы как-то начать предсказывать и менять пользователей, надо создать теорию, почему они ведут себя тем образом, который мы наблюдаем. Вторая глава как раз посвящена тому, как создавать подобные теории — какие критерии хорошей теории, как создавать метрики и формулировать гипотезы для проверки теории. И третья глава — как на основе теории менять поведение пользователей. Как понять, что мы действительно что-то изменили, как измерить. Даже предлагается несколько подходов, как обеспечивать изменения, в частности описывается Fogg Behavior Model.

Прочие части в целом неплохи, но какого-то уникального знания там меньше. Конечно, чувствуется политолого-демографический бэкграунд в описании casual inference подхода, да и в целом вся книга так или иначе фокусируется на этой парадигме (условно, “когда реальность очень неоднородна, квазиэксперименты лучше аб-тестов”). А код на R… приятно, что на R, но как и у многих академиков, как будто из 00-х, сильно отстал от реальности.

Из любопытного — в отличие от многих других книг по продуктовой аналитике, тут нет стандартного перечисления бизнес-метрик типа DAU или ARPU. Акцент сделан на поведении, концептуализации и измерении.

В общем, мне понравилось, несмотря на тяжеловесность текста. Я сам когда-то из академии и поэтому идея, что надо понять поведение пользователей и это будет ключом к изменению, мне понятна и очень близка.

#books



group-telegram.com/diceanalytics/139
Create:
Last Update:

Наконец-то дочитал Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights by Joanne Rodrigues. Много страниц, мелкий шрифт, очень плотный по содержанию текст.

Акадмический бэкграунд автора (магистратуры LSE и Беркли по математике, политологии и демографии) просматривается с самого начала. От методологии до кода на R, с кучей отступлений и инфомационных справок. В конце концов, когда еще в книге по аналитике прочитаешь про утилитаризм Бентама.

Книга состоит из пяти частей. Первая — методологическая. Вторая посвящена базовым статистическим методам (распределения, создание метрик, введение в A/B-тесты). Третья часть о предиктивных моделях (регрессии, деревья решений, SVM). Четвертая — о Casual inference методах (difference-in-difference, разрывный регрессионный дизайн, матчинг, аплифт-моделирование). Пятая часть про реализацию большей части методов на R.

Первая часть самая интересная и самая важная. В ней всего три главы. В первой главе проговаривается идея, что поведение пользователей сложное, у них разные мотивы, и мы никогда не обладаем всей полнотой информации. И для того, чтобы как-то начать предсказывать и менять пользователей, надо создать теорию, почему они ведут себя тем образом, который мы наблюдаем. Вторая глава как раз посвящена тому, как создавать подобные теории — какие критерии хорошей теории, как создавать метрики и формулировать гипотезы для проверки теории. И третья глава — как на основе теории менять поведение пользователей. Как понять, что мы действительно что-то изменили, как измерить. Даже предлагается несколько подходов, как обеспечивать изменения, в частности описывается Fogg Behavior Model.

Прочие части в целом неплохи, но какого-то уникального знания там меньше. Конечно, чувствуется политолого-демографический бэкграунд в описании casual inference подхода, да и в целом вся книга так или иначе фокусируется на этой парадигме (условно, “когда реальность очень неоднородна, квазиэксперименты лучше аб-тестов”). А код на R… приятно, что на R, но как и у многих академиков, как будто из 00-х, сильно отстал от реальности.

Из любопытного — в отличие от многих других книг по продуктовой аналитике, тут нет стандартного перечисления бизнес-метрик типа DAU или ARPU. Акцент сделан на поведении, концептуализации и измерении.

В общем, мне понравилось, несмотря на тяжеловесность текста. Я сам когда-то из академии и поэтому идея, что надо понять поведение пользователей и это будет ключом к изменению, мне понятна и очень близка.

#books

BY аналитика на кубах


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/diceanalytics/139

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from us


Telegram аналитика на кубах
FROM American