Telegram Group & Telegram Channel
Теперь про AlphaGeometry2. Это улучшение первой версии AlphaGeometry, но основная идея их работы одинаковая. AlphaGeometry состоит из двух частей: symbolic deduction engine (SDE) и LLM. Решение задачи происходит так: сначала в модель подаются все вводные по задаче (дан треугольник такой-то, этот угол такой-то), и symbolic deduction engine на основе этих данных генерирует все возможные выводы. Например, если из вводных данных можно исходя из геометрических правил понять, что ∠ABC=60°, то SDE это выведет. SDE — это не обучаемая штука, она оперирует правилами геометрии и при работе строит граф выводов.

Однако одной SDE для решения сложных задач часто не хватает. Чтобы решить олимпиадные задачи по геометрии, часто в них нужно генерировать новые сущности. Например, сделать что-то вида "давайте обозначим середину отрезка AB через D и проведем прямую CD, тогда ∠ACD=40° и отсюда получим, что...". Чтобы научить AlphaGeometry так делать, авторы взяли LLM и учили ее на основе имеющейся инфы о задаче генерировать подобные идеи.

В итоге процесс работы AlphaGeometry выглядит так:
1. SDE выводит все возможные утверждения, пока они не закончатся или не будет найдено решение задачи;
2. Если SDE отработала и решение не найдено, LLM-часть предлагает новую сущность (типа, го поставим вот эту точку)
3. Возвращаемся в пункт 1 и продолжаем далее.
(см 1 и 2 картинку к посту для иллюстрации процесса)

LLM-часть учили на огромном количестве геом задач, многие из которых генерировали синтетически. На IMO-2024 AlphaGeometry геом в итоге решила, причем при решении тоже потребовалось обозначить новую сущность — точку E на рисунке (третья картинка к посту)

Больше про AlphaGeometry:
✔️блогпост DeepMind;
✔️статья в Nature;
✔️код на GitHub.



group-telegram.com/dl_stories/845
Create:
Last Update:

Теперь про AlphaGeometry2. Это улучшение первой версии AlphaGeometry, но основная идея их работы одинаковая. AlphaGeometry состоит из двух частей: symbolic deduction engine (SDE) и LLM. Решение задачи происходит так: сначала в модель подаются все вводные по задаче (дан треугольник такой-то, этот угол такой-то), и symbolic deduction engine на основе этих данных генерирует все возможные выводы. Например, если из вводных данных можно исходя из геометрических правил понять, что ∠ABC=60°, то SDE это выведет. SDE — это не обучаемая штука, она оперирует правилами геометрии и при работе строит граф выводов.

Однако одной SDE для решения сложных задач часто не хватает. Чтобы решить олимпиадные задачи по геометрии, часто в них нужно генерировать новые сущности. Например, сделать что-то вида "давайте обозначим середину отрезка AB через D и проведем прямую CD, тогда ∠ACD=40° и отсюда получим, что...". Чтобы научить AlphaGeometry так делать, авторы взяли LLM и учили ее на основе имеющейся инфы о задаче генерировать подобные идеи.

В итоге процесс работы AlphaGeometry выглядит так:
1. SDE выводит все возможные утверждения, пока они не закончатся или не будет найдено решение задачи;
2. Если SDE отработала и решение не найдено, LLM-часть предлагает новую сущность (типа, го поставим вот эту точку)
3. Возвращаемся в пункт 1 и продолжаем далее.
(см 1 и 2 картинку к посту для иллюстрации процесса)

LLM-часть учили на огромном количестве геом задач, многие из которых генерировали синтетически. На IMO-2024 AlphaGeometry геом в итоге решила, причем при решении тоже потребовалось обозначить новую сущность — точку E на рисунке (третья картинка к посту)

Больше про AlphaGeometry:
✔️блогпост DeepMind;
✔️статья в Nature;
✔️код на GitHub.

BY DLStories






Share with your friend now:
group-telegram.com/dl_stories/845

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." Despite Telegram's origins, its approach to users' security has privacy advocates worried.
from us


Telegram DLStories
FROM American