Telegram Group & Telegram Channel
Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/171
Create:
Last Update:

Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/171

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge.
from us


Telegram epsilon correct
FROM American