Telegram Group & Telegram Channel
LLM знают, чего именно они не знают

Эх, когда-нибудь я допишу большой хабр про механистическую интерпретируемость и Sparse Auto-Encoders (SAE), а пока, будет только небольшой разбор крутейшей свежей статьи от отцов-основателей этой области Javier Ferrando, Neel Nanda, et al. про самоконтроль галлюцинаций в LLM.

Можно ли определить заранее, выдаст модель галлюцинацию на какой-то промпт или ответит осознанно? Похоже, иногда это возможно. Авторы обнаружили, что когда LLM видит какую-то сущность в запросе (имя человека, название песни и тп), то внутри неё активируются механизмы для проверки своих же знаний, что-то вроде «а есть ли у меня в весах что-то про Steve Jobs или нет?». И обычно у LLM это работает довольно неплохо, в активациях есть линейные направления (латенты SAE), которые отвечают за это разделение «известная/ неизвестная» сущность. На картинке к посту можно видеть, как активируются признаки на реальном и вымышленном текстах.

Оказалось, что этот же латент отвечает и за «refusal» поведение, когда модель/ассистент отказывается отвечать на запрос и бросается заглушкой вроде «As a large language model I don’t have knowledge about blablabla». Подавление неправильного ответа происходит через блокирование специализированной головы внимания, отвечающей за извлечение знаний о сущностях (да, у каждой LLM есть отдельная голова на каком-то конкретном слое для этого). А главное, контролируя это латентное направление в языковых моделях, можно вручную регулировать баланс между галлюцинациями и отказами отвечать.

Все эксперименты проводились на Gemma 2B и 9B, так как для каждого их слоя обучены и опубликованы SAE — Gemma Scope.

Статья



group-telegram.com/abstractDL/303
Create:
Last Update:

LLM знают, чего именно они не знают

Эх, когда-нибудь я допишу большой хабр про механистическую интерпретируемость и Sparse Auto-Encoders (SAE), а пока, будет только небольшой разбор крутейшей свежей статьи от отцов-основателей этой области Javier Ferrando, Neel Nanda, et al. про самоконтроль галлюцинаций в LLM.

Можно ли определить заранее, выдаст модель галлюцинацию на какой-то промпт или ответит осознанно? Похоже, иногда это возможно. Авторы обнаружили, что когда LLM видит какую-то сущность в запросе (имя человека, название песни и тп), то внутри неё активируются механизмы для проверки своих же знаний, что-то вроде «а есть ли у меня в весах что-то про Steve Jobs или нет?». И обычно у LLM это работает довольно неплохо, в активациях есть линейные направления (латенты SAE), которые отвечают за это разделение «известная/ неизвестная» сущность. На картинке к посту можно видеть, как активируются признаки на реальном и вымышленном текстах.

Оказалось, что этот же латент отвечает и за «refusal» поведение, когда модель/ассистент отказывается отвечать на запрос и бросается заглушкой вроде «As a large language model I don’t have knowledge about blablabla». Подавление неправильного ответа происходит через блокирование специализированной головы внимания, отвечающей за извлечение знаний о сущностях (да, у каждой LLM есть отдельная голова на каком-то конкретном слое для этого). А главное, контролируя это латентное направление в языковых моделях, можно вручную регулировать баланс между галлюцинациями и отказами отвечать.

Все эксперименты проводились на Gemma 2B и 9B, так как для каждого их слоя обучены и опубликованы SAE — Gemma Scope.

Статья

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/303

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. False news often spreads via public groups, or chats, with potentially fatal effects. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from es


Telegram AbstractDL
FROM American