Notice: file_put_contents(): Write of 3445 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11637 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
AbstractDL | Telegram Webview: abstractDL/311 -
Telegram Group & Telegram Channel
COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)

С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁

Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.

Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.

Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.

Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.

P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.

Статья, GitHub



group-telegram.com/abstractDL/311
Create:
Last Update:

COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)

С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁

Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.

Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.

Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.

Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.

P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.

Статья, GitHub

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/311

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read."
from es


Telegram AbstractDL
FROM American