MAS: Multi-view Ancestral Sampling for 3D motion generation using 2D diffusion
Тут подвезли диффузию для генерации 3d motion любых персонажей (людей и животных), обучаясь только на 2D данных!
Качественных Mocap 3D данных движения людей и животных очень мало. Например, их почти нет для таких видов спорта как баскетбол или танцев, а уж тем более для животных. Причина тому — дороговизна и недобство сбора таких данных (нужно оборудование, нацеплять трекеры на тело и тд.). А генерировать 3D motion очень хочется - например для анимации, игр и VR.
В этой статье предлагается научить дифуузию генерить 2d траектории движения, а затем использовать эту сетку, чтобы генерить 2d проекции трехмерного моушена с разных камер. Чтобы проекции были консистентными предлагается дополнительной блок, который после каждого шага диффузии решает задачу оптимизации и находит ближайший 3D скелет, который лучше всего удовлетворяет всем проекциям, затем это решение опять проецируется на все камеры и кормится в следующий шаг дифуузии. В итоге на выходе имеет полноценный 3D моушен, хотя в тренировке модель никода не видела 3D!
MAS: Multi-view Ancestral Sampling for 3D motion generation using 2D diffusion
Тут подвезли диффузию для генерации 3d motion любых персонажей (людей и животных), обучаясь только на 2D данных!
Качественных Mocap 3D данных движения людей и животных очень мало. Например, их почти нет для таких видов спорта как баскетбол или танцев, а уж тем более для животных. Причина тому — дороговизна и недобство сбора таких данных (нужно оборудование, нацеплять трекеры на тело и тд.). А генерировать 3D motion очень хочется - например для анимации, игр и VR.
В этой статье предлагается научить дифуузию генерить 2d траектории движения, а затем использовать эту сетку, чтобы генерить 2d проекции трехмерного моушена с разных камер. Чтобы проекции были консистентными предлагается дополнительной блок, который после каждого шага диффузии решает задачу оптимизации и находит ближайший 3D скелет, который лучше всего удовлетворяет всем проекциям, затем это решение опять проецируется на все камеры и кормится в следующий шаг дифуузии. В итоге на выходе имеет полноценный 3D моушен, хотя в тренировке модель никода не видела 3D!
At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from es