Telegram Group & Telegram Channel
⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2491
Create:
Last Update:

⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz

BY эйай ньюз






Share with your friend now:
group-telegram.com/ai_newz/2491

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides.
from es


Telegram эйай ньюз
FROM American