Telegram Group & Telegram Channel
Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz



group-telegram.com/ai_newz/2663
Create:
Last Update:

Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz

BY эйай ньюз





Share with your friend now:
group-telegram.com/ai_newz/2663

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." 'Wild West' "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones.
from es


Telegram эйай ньюз
FROM American