Notice: file_put_contents(): Write of 2500 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10692 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Борис опять | Telegram Webview: boris_again/1488 -
Telegram Group & Telegram Channel
# Минимальные знания Software Engineering для Data Scientist 3/3

## Map Reduce
Туториал
Чтение
Общая парадигма того, как быстро обрабатывать данные, которые не влезают в оперативную память или даже диск сервера. Не вся Биг Дата это Map Reduce. Но позволит понять основные идеи.

## Распределенные вычисления
Выбрать одно: Spark Quickstart, Dask Quickstart
Apache Spark, Dask и аналоги это инструменты, которые реализуют Map Reduce и другие парадигмы. Они делают чтобы было быстро несмотря на то, что очень много. Очень часто встречаются в требованиях на вакансии DS, MLE и не только. Apache Spark более популярный, Dask - проще и приятнее. Для ознакомления выбирайте любой.
Для закрепления: переписываем из пункта Sklearn Pipelines так, чтобы feature engineering выполнялся с помощью Spark или Dask.

## MLOps - MLFlow
Однажды люди поняли, что при создании ML проектов можно не просто творить как получится, а использовать накопленные человечеством 40+ лет знаний о разработке софта. И придумали MLOps. Это о том, как менеджерить данные, модели, эксперименты и код экспериментов. Главные компоненты MLOps: структурирование проектов, трекинг экспериментов, версионирование данных и моделей, деплой моделей. Деплой моделей мы опустим, чтобы сэкономить в голове место, потому что для минимума он не критичен. Проще всего не осваивать все по-отдельности, а разобраться в самой популярной платформе, которая их объединяет: MLFlow.

Читаем для познания основных идей:
- Версионирование данных и моделей
- Трекинг экспериментов (сразу с MLFlow примером)
Проходим туториал по MLFlow
Для закрепления: добавляем MLFlow в свой ML проект.
- Метрики эксперимента должны отправляться при обучении в MLFlow.
- После обучения модель должна сохраняться в MLFlow Model Registry.



group-telegram.com/boris_again/1488
Create:
Last Update:

# Минимальные знания Software Engineering для Data Scientist 3/3

## Map Reduce
Туториал
Чтение
Общая парадигма того, как быстро обрабатывать данные, которые не влезают в оперативную память или даже диск сервера. Не вся Биг Дата это Map Reduce. Но позволит понять основные идеи.

## Распределенные вычисления
Выбрать одно: Spark Quickstart, Dask Quickstart
Apache Spark, Dask и аналоги это инструменты, которые реализуют Map Reduce и другие парадигмы. Они делают чтобы было быстро несмотря на то, что очень много. Очень часто встречаются в требованиях на вакансии DS, MLE и не только. Apache Spark более популярный, Dask - проще и приятнее. Для ознакомления выбирайте любой.
Для закрепления: переписываем из пункта Sklearn Pipelines так, чтобы feature engineering выполнялся с помощью Spark или Dask.

## MLOps - MLFlow
Однажды люди поняли, что при создании ML проектов можно не просто творить как получится, а использовать накопленные человечеством 40+ лет знаний о разработке софта. И придумали MLOps. Это о том, как менеджерить данные, модели, эксперименты и код экспериментов. Главные компоненты MLOps: структурирование проектов, трекинг экспериментов, версионирование данных и моделей, деплой моделей. Деплой моделей мы опустим, чтобы сэкономить в голове место, потому что для минимума он не критичен. Проще всего не осваивать все по-отдельности, а разобраться в самой популярной платформе, которая их объединяет: MLFlow.

Читаем для познания основных идей:
- Версионирование данных и моделей
- Трекинг экспериментов (сразу с MLFlow примером)
Проходим туториал по MLFlow
Для закрепления: добавляем MLFlow в свой ML проект.
- Метрики эксперимента должны отправляться при обучении в MLFlow.
- После обучения модель должна сохраняться в MLFlow Model Registry.

BY Борис опять


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/boris_again/1488

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments.
from es


Telegram Борис опять
FROM American