group-telegram.com/compmathweekly/22
Create:
Last Update:
Last Update:
на картинке сверху — тождества¹ из заметки С.Маркелова в Мат. просвещении, и там предлагается придумать обобщения
¹ там только есть опечатка… найдите
программа в комментариях — говорит, суммы каких косинусов надо взять для произвольного p вида 3k+1, а также какому кубическому уравнению они удовлетворяют (и на всякий случай численно проверяет, удовлетворяют ли)
(upd) а также находит формулу для суммы S кубических корней из этих сумму косинусов, шоб было совсем как в заметке
p: 13
primitive root: 2
partition of cosines: [3, 11] [7, 9] [1, 5]
values of trigsums: -0.136945 -0.688601 1.325547
cubic polynomial: 8t³-4t²-8t-1
P(trigsums): -0.0 0.0 0.0
S³ = (3³√-13+7)/2
p: 73
primitive root: 5
partition of cosines: [13, 19, 25, 29, 31, 39, 53, 55, 57, 59, 67, 71] [1, 3, 7, 9
, 17, 21, 27, 43, 49, 51, 63, 65] [5, 11, 15, 23, 33, 35, 37, 41, 45, 47, 61, 69]
values of trigsums: -2.475085 2.40906 0.566026
cubic polynomial: 8t³-4t²-48t+27
P(trigsums): 0.0 0.0 -0.0
S³ = (3³√219-17)/2
теорема Рамануджана о том, как посчитать сумму кубических корней из корней данного кубического уравнения, обсуждается например в Кванте
BY Компьютерная математика Weekly
Share with your friend now:
group-telegram.com/compmathweekly/22