Telegram Group & Telegram Channel
[OpenAI InstructGPT & RLHF] Training language models to follow instructions with human feedback
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe
Статья: https://arxiv.org/abs/2203.02155
Пост в блоге: https://openai.com/blog/instruction-following/
Model card: https://github.com/openai/following-instructions-human-feedback

Мы уже много раз упоминали RLHF (Reinforcement Learning from Human Feedback), на котором построены модели OpenAI семейства InstructGPT (включая ChatGPT), а также модели конкурирующих фирм типа Sparrow от DeepMind (https://www.group-telegram.com/es/gonzo_ML.com/1237). Надо разобрать эту классику.

Оригинальная цель работы -- alignment, выровнять поведение модели относительно интента пользователя. Под интентом в данном случае подразумевается как явное следование инструкциям (что запросил человек в промпте), так и неявные truthfulness, fairness, safety.

В OpenAI темой alignment занимается отдельная команда (https://openai.com/alignment/), их подход описан в этой статье (https://openai.com/blog/our-approach-to-alignment-research/). Вот дискуссия с обсуждением этого плана на AI alignment forum (https://www.alignmentforum.org/posts/FTk7ufqK2D4dkdBDr/notes-on-openai-s-alignment-plan). Отдельный вопрос, как это всё может переноситься на alignment сущностей умнее человека.

Если вдаваться в суть, то иерархия адаптации GPT-подобных моделей выглядит как-то так.

Во-первых, есть базовая модель GPT, обученная на каких-то достаточно универсальных и разнообразных данных. У моделей разных компаний эти наборы данных разные, хотя и пересекающиеся. Есть также специализированные версии GPT, обученные на специальных доменах, типа BioGPT от Microsoft (https://github.com/microsoft/BioGPT). Это всё предобученные модели (pre-trained models).

Дальше, предобученную модель можно уговаривать произвести нужный вам результат путём подбора правильного промпта. Это тот самый prompt-engineering. На выходе мы получаем prompt-tuned модель. Промпт-инжиниринг включает в себя добавление в промпт примеров решения нужной задачи, это тот самый few-shot learning через in-context learning, который основательно выстрелил после работы про GPT-3 (https://www.group-telegram.com/es/gonzo_ML.com/305). По сути это всё тот же промпт с добавленными примерами.

Другой параллельный способ улучшения модели, это supervised fine-tuning, когда модель дообучается на той же задаче языкового моделирования (предсказания следующего токена), что и оригинальная GPT, но на специальном тематическом датасете. Так, например, LaMDA (https://www.group-telegram.com/es/gonzo_ML.com/1229) дообучалась на примерах хороших по разным критериям диалогов.

Ну и наконец новый зверь в зоопарке, RLHF, также помогает получить более качественную модель, используя обучение с подкреплением, где в качестве сигнала для обучения выступают предпочтения человеков относительно разных генераций. Это далеко не первый пример использования RL, во многом у тех же авторов из OpenAI за пару лет до работы про InstructGPT была работа про суммаризацию с RL (https://openai.com/blog/learning-to-summarize-with-human-feedback/), а ещё раньше на NIPS 2017 года была совместная работа авторов из DeepMind и OpenAI под названием “Deep Reinforcement Learning from Human Preferences” (https://arxiv.org/abs/1706.03741).

Проблема применения RL для таких задач в том, что сигнал от людей собирать дорого, и большой его поток сложно обеспечить. Поэтому хотелось бы его на несколько порядков уменьшить, чтобы сделать применение RL реальным. В той работе 17 года предложили для этого использовать обучаемую на человеческих оценках reward function, которая дальше используется для предсказания награды агента. Функция не человек, её можно дёргать часто.



group-telegram.com/gonzo_ML/1277
Create:
Last Update:

[OpenAI InstructGPT & RLHF] Training language models to follow instructions with human feedback
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe
Статья: https://arxiv.org/abs/2203.02155
Пост в блоге: https://openai.com/blog/instruction-following/
Model card: https://github.com/openai/following-instructions-human-feedback

Мы уже много раз упоминали RLHF (Reinforcement Learning from Human Feedback), на котором построены модели OpenAI семейства InstructGPT (включая ChatGPT), а также модели конкурирующих фирм типа Sparrow от DeepMind (https://www.group-telegram.com/es/gonzo_ML.com/1237). Надо разобрать эту классику.

Оригинальная цель работы -- alignment, выровнять поведение модели относительно интента пользователя. Под интентом в данном случае подразумевается как явное следование инструкциям (что запросил человек в промпте), так и неявные truthfulness, fairness, safety.

В OpenAI темой alignment занимается отдельная команда (https://openai.com/alignment/), их подход описан в этой статье (https://openai.com/blog/our-approach-to-alignment-research/). Вот дискуссия с обсуждением этого плана на AI alignment forum (https://www.alignmentforum.org/posts/FTk7ufqK2D4dkdBDr/notes-on-openai-s-alignment-plan). Отдельный вопрос, как это всё может переноситься на alignment сущностей умнее человека.

Если вдаваться в суть, то иерархия адаптации GPT-подобных моделей выглядит как-то так.

Во-первых, есть базовая модель GPT, обученная на каких-то достаточно универсальных и разнообразных данных. У моделей разных компаний эти наборы данных разные, хотя и пересекающиеся. Есть также специализированные версии GPT, обученные на специальных доменах, типа BioGPT от Microsoft (https://github.com/microsoft/BioGPT). Это всё предобученные модели (pre-trained models).

Дальше, предобученную модель можно уговаривать произвести нужный вам результат путём подбора правильного промпта. Это тот самый prompt-engineering. На выходе мы получаем prompt-tuned модель. Промпт-инжиниринг включает в себя добавление в промпт примеров решения нужной задачи, это тот самый few-shot learning через in-context learning, который основательно выстрелил после работы про GPT-3 (https://www.group-telegram.com/es/gonzo_ML.com/305). По сути это всё тот же промпт с добавленными примерами.

Другой параллельный способ улучшения модели, это supervised fine-tuning, когда модель дообучается на той же задаче языкового моделирования (предсказания следующего токена), что и оригинальная GPT, но на специальном тематическом датасете. Так, например, LaMDA (https://www.group-telegram.com/es/gonzo_ML.com/1229) дообучалась на примерах хороших по разным критериям диалогов.

Ну и наконец новый зверь в зоопарке, RLHF, также помогает получить более качественную модель, используя обучение с подкреплением, где в качестве сигнала для обучения выступают предпочтения человеков относительно разных генераций. Это далеко не первый пример использования RL, во многом у тех же авторов из OpenAI за пару лет до работы про InstructGPT была работа про суммаризацию с RL (https://openai.com/blog/learning-to-summarize-with-human-feedback/), а ещё раньше на NIPS 2017 года была совместная работа авторов из DeepMind и OpenAI под названием “Deep Reinforcement Learning from Human Preferences” (https://arxiv.org/abs/1706.03741).

Проблема применения RL для таких задач в том, что сигнал от людей собирать дорого, и большой его поток сложно обеспечить. Поэтому хотелось бы его на несколько порядков уменьшить, чтобы сделать применение RL реальным. В той работе 17 года предложили для этого использовать обучаемую на человеческих оценках reward function, которая дальше используется для предсказания награды агента. Функция не человек, её можно дёргать часто.

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/1277

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from es


Telegram gonzo-обзоры ML статей
FROM American